Direct imaging of active galactic nucleus outflows and their origin with the 23 m Large Binocular Telescope

IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Nature Astronomy Pub Date : 2025-01-17 DOI:10.1038/s41550-024-02461-y
J. W. Isbell, S. Ertel, J.-U. Pott, G. Weigelt, M. Stalevski, J. Leftley, W. Jaffe, R. G. Petrov, N. Moszczynski, P. Vermot, P. Hinz, L. Burtscher, V. Gámez Rosas, A. Becker, J. Carlson, V. Faramaz-Gorka, W. F. Hoffmann, J. Leisenring, J. Power, K. Wagner
{"title":"Direct imaging of active galactic nucleus outflows and their origin with the 23 m Large Binocular Telescope","authors":"J. W. Isbell, S. Ertel, J.-U. Pott, G. Weigelt, M. Stalevski, J. Leftley, W. Jaffe, R. G. Petrov, N. Moszczynski, P. Vermot, P. Hinz, L. Burtscher, V. Gámez Rosas, A. Becker, J. Carlson, V. Faramaz-Gorka, W. F. Hoffmann, J. Leisenring, J. Power, K. Wagner","doi":"10.1038/s41550-024-02461-y","DOIUrl":null,"url":null,"abstract":"<p>Active galactic nuclei (AGNs) are a key component of galaxy evolution owing to feedback on the host from its supermassive black hole. The morphology of warm inflowing and outflowing dusty material can reveal the nature of the onset of feedback, AGN feeding and the unified model of AGN. Here we use the Large Binocular Telescope Interferometer (LBTI) to image the dense, obscuring disk and extended dusty outflow region of NGC 1068. In Fizeau imaging mode, the LBTI synthesizes the equivalent resolution of a 22.8 m telescope. The 8.7 μm Fizeau images of NGC 1068 have an effective resolution of 47 × 90 mas (3.3 × 6.2 pc) in a 5″ field of view after performing point spread function deconvolution techniques described here. This is the only extragalactic source to be Fizeau imaged using the LBTI, and the images bridge the scales measured with the Very Large Telescope Interferometer (0.5–5 pc) and those of single telescopes such as James Webb Space Telescope and Keck (&gt;15 pc). The images detect and spatially resolve the low surface brightness mid-infrared features in the AGN disk/wind region that are overresolved by the Very Large Telescope Interferometer. The images show strong correlation between mid-infrared dust emission and near-infrared emission of highly excited atomic lines observed by SINFONI. Such LBTI imaging is a precursor to infrared imaging using the upcoming generation of extremely large telescopes, with angular resolutions up to six times better than James Webb Space Telescope, the largest space telescope in orbit.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"7 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-024-02461-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Active galactic nuclei (AGNs) are a key component of galaxy evolution owing to feedback on the host from its supermassive black hole. The morphology of warm inflowing and outflowing dusty material can reveal the nature of the onset of feedback, AGN feeding and the unified model of AGN. Here we use the Large Binocular Telescope Interferometer (LBTI) to image the dense, obscuring disk and extended dusty outflow region of NGC 1068. In Fizeau imaging mode, the LBTI synthesizes the equivalent resolution of a 22.8 m telescope. The 8.7 μm Fizeau images of NGC 1068 have an effective resolution of 47 × 90 mas (3.3 × 6.2 pc) in a 5″ field of view after performing point spread function deconvolution techniques described here. This is the only extragalactic source to be Fizeau imaged using the LBTI, and the images bridge the scales measured with the Very Large Telescope Interferometer (0.5–5 pc) and those of single telescopes such as James Webb Space Telescope and Keck (>15 pc). The images detect and spatially resolve the low surface brightness mid-infrared features in the AGN disk/wind region that are overresolved by the Very Large Telescope Interferometer. The images show strong correlation between mid-infrared dust emission and near-infrared emission of highly excited atomic lines observed by SINFONI. Such LBTI imaging is a precursor to infrared imaging using the upcoming generation of extremely large telescopes, with angular resolutions up to six times better than James Webb Space Telescope, the largest space telescope in orbit.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用23米大型双筒望远镜直接成像活动星系核外流及其起源
活动星系核(agn)是星系演化的关键组成部分,主要是由于其超大质量黑洞对宿主的反馈。温热流入和流出的含尘物质形态可以揭示反馈开始、AGN进料和AGN统一模型的性质。在这里,我们使用大型双筒望远镜干涉仪(LBTI)对ngc1068密集的、模糊的圆盘和扩展的尘埃流出区进行了成像。在菲索成像模式下,LBTI综合了22.8米望远镜的等效分辨率。NGC 1068的8.7 μm Fizeau图像在5″视场中执行点扩展函数反卷积技术后,有效分辨率为47 × 90 mas (3.3 × 6.2 pc)。这是菲索使用LBTI拍摄到的唯一星系外源,这些图像连接了超大望远镜干涉仪(0.5-5个单位)和单个望远镜如詹姆斯·韦伯太空望远镜和凯克望远镜(15个单位)测量到的尺度。这些图像检测并空间解析了AGN盘/风区的低表面亮度中红外特征,这些特征是由甚大望远镜干涉仪过度分辨的。图像显示了SINFONI观测到的高激发原子线的中红外尘埃发射和近红外发射之间有很强的相关性。这种LBTI成像是使用即将到来的一代超大望远镜进行红外成像的先驱,其角分辨率比轨道上最大的太空望远镜詹姆斯韦伯太空望远镜高6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
期刊最新文献
Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu High-definition imaging of a filamentary connection between a close quasar pair at z = 3 An Hα–X-ray surface-brightness correlation for filaments in cooling-flow clusters Partial differentiation of Europa and implications for the origin of materials in the Jupiter system Soft X-ray prompt emission from the high-redshift gamma-ray burst EP240315a
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1