Tuning the Lanthanide Binding Tags for Preferential Actinide Chelation: an all atom Molecular Dynamics study

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2025-01-17 DOI:10.1039/d4cp04203d
Vijayakriti Mishra, Mahesh Sundararajan, Arup K Pathak, Pramilla D Sawant, Tusar Bandyopadhyay
{"title":"Tuning the Lanthanide Binding Tags for Preferential Actinide Chelation: an all atom Molecular Dynamics study","authors":"Vijayakriti Mishra, Mahesh Sundararajan, Arup K Pathak, Pramilla D Sawant, Tusar Bandyopadhyay","doi":"10.1039/d4cp04203d","DOIUrl":null,"url":null,"abstract":"The present study focuses on designing mutant peptides derived from the Lanthanide Binding Tag (LBT) to enhance selectivity for trivalent actinide (An³⁺) ions over lanthanides (Ln³⁺) metal ions (M). LBT, a short peptide known for its high affinity towards Ln³⁺, was modified by substituting hard-donor ligands like asparagine (Asn or N) and aspartic acid (Asp or D) with softer ligand cysteine (Cys or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C. Molecular dynamics (MD) simulations were employed to analyze the binding dynamics and affinities of these mutants with Eu³⁺ and Am³⁺ as representatives for Ln and An ions, respectively. The study utilized enhance sampling method, namely, well-tempered meta-dynamics (WT-MtD) to overcome sampling challenges and obtain converged free energy profiles for the metal-binding interactions. Our simulations studies indicate that both single and double mutations alter the coordination environment within the peptide's binding pocket, potentially increasing Am3+ selectivity over Eu3+ ion. These insights contribute to the developmentofmore effective and selective chelating agents for the preferential actinide binding.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"68 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04203d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study focuses on designing mutant peptides derived from the Lanthanide Binding Tag (LBT) to enhance selectivity for trivalent actinide (An³⁺) ions over lanthanides (Ln³⁺) metal ions (M). LBT, a short peptide known for its high affinity towards Ln³⁺, was modified by substituting hard-donor ligands like asparagine (Asn or N) and aspartic acid (Asp or D) with softer ligand cysteine (Cys or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C. Molecular dynamics (MD) simulations were employed to analyze the binding dynamics and affinities of these mutants with Eu³⁺ and Am³⁺ as representatives for Ln and An ions, respectively. The study utilized enhance sampling method, namely, well-tempered meta-dynamics (WT-MtD) to overcome sampling challenges and obtain converged free energy profiles for the metal-binding interactions. Our simulations studies indicate that both single and double mutations alter the coordination environment within the peptide's binding pocket, potentially increasing Am3+ selectivity over Eu3+ ion. These insights contribute to the developmentofmore effective and selective chelating agents for the preferential actinide binding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
A dozen predicted SiGe alloys with low enthalpies and strong absorption of sunlight for photovoltaic applications A novel cellulose-derived graphite carbon/ZnO composite by atomic layer deposition as over-wideband microwave absorbents Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries The mobility of polypeptide chains in cow femur bones controlled by an electric field Elaborating H-bonding effect and excited state intramolecular proton transfer of 2-(2-hydroxyphenyl)benzothiazole based D–π–A fluorescent dye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1