Xinrui Zhao, Zhe Wang, Xia Deng, Hongli Li, Nan Wang, Xue Zeng, Peng Zhang, Yang Yao, Rong Peng, Shuo Jiang, Shibiao Xie, Mingsu Si, Junwei Zhang, Yong Peng
{"title":"Direct Observation of Dipole Interlocking Effect Occurrence in Two-Dimensional Ferroelectricity","authors":"Xinrui Zhao, Zhe Wang, Xia Deng, Hongli Li, Nan Wang, Xue Zeng, Peng Zhang, Yang Yao, Rong Peng, Shuo Jiang, Shibiao Xie, Mingsu Si, Junwei Zhang, Yong Peng","doi":"10.1021/acs.nanolett.4c05644","DOIUrl":null,"url":null,"abstract":"The electric dipole in materials is closely associated with their electronic transport, optical properties, and mechanical behavior. Here, we have employed the differential phase contrast (DPC) technique of the scanning transmission electron microscopy technique (STEM) to directly analyze the local electric dipole at the sub-Angstrom scale. By utilizing DPC-STEM technology, we successfully visualized the ferroelectric polarization of van der Waals material 3R α-In<sub>2</sub>Se<sub>3</sub> and directly confirmed the dipole interlocking effect (DIE) between in-plane (IP) and out-of-plane (OOP) polarizations. Through density functional theory (DFT) calculations and structural analysis, we discovered that this DIE is caused by the central asymmetry of the middle Se atoms of each monolayer and that the reversal of polarization is accompanied by the emergence of an intermediate phase, β-In<sub>2</sub>Se<sub>3</sub>. Leveraging the DIE, we developed a multidirectional ferroelectric memristor that can effectively modulate the IP polarization by applying an OOP pulse voltage.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"45 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05644","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The electric dipole in materials is closely associated with their electronic transport, optical properties, and mechanical behavior. Here, we have employed the differential phase contrast (DPC) technique of the scanning transmission electron microscopy technique (STEM) to directly analyze the local electric dipole at the sub-Angstrom scale. By utilizing DPC-STEM technology, we successfully visualized the ferroelectric polarization of van der Waals material 3R α-In2Se3 and directly confirmed the dipole interlocking effect (DIE) between in-plane (IP) and out-of-plane (OOP) polarizations. Through density functional theory (DFT) calculations and structural analysis, we discovered that this DIE is caused by the central asymmetry of the middle Se atoms of each monolayer and that the reversal of polarization is accompanied by the emergence of an intermediate phase, β-In2Se3. Leveraging the DIE, we developed a multidirectional ferroelectric memristor that can effectively modulate the IP polarization by applying an OOP pulse voltage.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.