Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2025-01-17 DOI:10.1016/j.cell.2024.12.009
Giuseppe Quarto, Andrea Li Greci, Martin Bizet, Audrey Penning, Irina Primac, Frédéric Murisier, Liliana Garcia-Martinez, Rodrigo L. Borges, Qingzeng Gao, Pradeep K.R. Cingaram, Emilie Calonne, Bouchra Hassabi, Céline Hubert, Adèle Herpoel, Pascale Putmans, Frédérique Mies, Jérôme Martin, Louis Van der Linden, Gaurav Dube, Pankaj Kumar, François Fuks
{"title":"Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation","authors":"Giuseppe Quarto, Andrea Li Greci, Martin Bizet, Audrey Penning, Irina Primac, Frédéric Murisier, Liliana Garcia-Martinez, Rodrigo L. Borges, Qingzeng Gao, Pradeep K.R. Cingaram, Emilie Calonne, Bouchra Hassabi, Céline Hubert, Adèle Herpoel, Pascale Putmans, Frédérique Mies, Jérôme Martin, Louis Van der Linden, Gaurav Dube, Pankaj Kumar, François Fuks","doi":"10.1016/j.cell.2024.12.009","DOIUrl":null,"url":null,"abstract":"The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (m<sup>6</sup>A), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between m<sup>6</sup>A and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation. We identify a set of genes whose expression is fine-tuned by both gene-body 5mC, which promotes transcription, and m<sup>6</sup>A, which destabilizes transcripts. We demonstrate that METTL3-METTL14-dependent 5mC and m<sup>6</sup>A are both essential for the differentiation of embryonic stem cells into embryoid bodies and that the upregulation of key differentiation genes during early differentiation depends on the dynamic balance between increased 5mC and decreased m<sup>6</sup>A. Our findings add a surprising dimension to our understanding of how epigenetics and epitranscriptomics combine to regulate gene expression and impact development and likely other biological processes.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"83 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.12.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (m6A), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between m6A and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation. We identify a set of genes whose expression is fine-tuned by both gene-body 5mC, which promotes transcription, and m6A, which destabilizes transcripts. We demonstrate that METTL3-METTL14-dependent 5mC and m6A are both essential for the differentiation of embryonic stem cells into embryoid bodies and that the upregulation of key differentiation genes during early differentiation depends on the dynamic balance between increased 5mC and decreased m6A. Our findings add a surprising dimension to our understanding of how epigenetics and epitranscriptomics combine to regulate gene expression and impact development and likely other biological processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Hyperacute rejection-engineered oncolytic virus for interventional clinical trial in refractory cancer patients Passage of the HIV capsid cracks the nuclear pore Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation A biophysical basis for the spreading behavior and limited diffusion of Xist SMC motor proteins extrude DNA asymmetrically and can switch directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1