Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-17 DOI:10.1038/s41467-025-55856-4
Shujie Liu, Zhiguo Zhang, Kamran Dastafkan, Yan Shen, Chuan Zhao, Mingkui Wang
{"title":"Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater","authors":"Shujie Liu, Zhiguo Zhang, Kamran Dastafkan, Yan Shen, Chuan Zhao, Mingkui Wang","doi":"10.1038/s41467-025-55856-4","DOIUrl":null,"url":null,"abstract":"<p>Active and stable electrocatalysts are essential for hydrogen production from alkaline water electrolysis. However, precisely controlling the interaction between electrocatalysts and reaction intermediates (H<sub>2</sub>O*, H*, and *OH) remains challenging. Here, we demonstrate an yttrium-doped NiMo-MoO<sub>2</sub> heterogenous electrocatalyst that efficiently promotes water dissociation and accelerates the intermediate adsorption/desorption dynamics in alkaline electrolytes. Introducing yttrium into the NiMo/MoO<sub>2</sub> heterostructure induces lattice expansion and optimizes the <i>d</i>-band center of NiMo alloy component, enhancing water dissociation and H* desorption. Yttrium doping also increases the concentration of oxygen vacancies in MoO<sub>2−x</sub>, which in turn accelerates the charge kinetics and the swift evacuation of *OH intermediates from the active sites. Consequently, the Y-NiMo/MoO<sub>2−x</sub> heterostructure exhibits notable performance by requiring only 189 and 220 mV overpotentials to achieve current density of 2.0 A cm<sup>−2</sup> in alkaline water and seawater, respectively. This work provides a strategy to modulate heterostructure catalysts for scalable, economically viable hydrogen production from low-quality waters.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"67 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55856-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Active and stable electrocatalysts are essential for hydrogen production from alkaline water electrolysis. However, precisely controlling the interaction between electrocatalysts and reaction intermediates (H2O*, H*, and *OH) remains challenging. Here, we demonstrate an yttrium-doped NiMo-MoO2 heterogenous electrocatalyst that efficiently promotes water dissociation and accelerates the intermediate adsorption/desorption dynamics in alkaline electrolytes. Introducing yttrium into the NiMo/MoO2 heterostructure induces lattice expansion and optimizes the d-band center of NiMo alloy component, enhancing water dissociation and H* desorption. Yttrium doping also increases the concentration of oxygen vacancies in MoO2−x, which in turn accelerates the charge kinetics and the swift evacuation of *OH intermediates from the active sites. Consequently, the Y-NiMo/MoO2−x heterostructure exhibits notable performance by requiring only 189 and 220 mV overpotentials to achieve current density of 2.0 A cm−2 in alkaline water and seawater, respectively. This work provides a strategy to modulate heterostructure catalysts for scalable, economically viable hydrogen production from low-quality waters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱水制氢用掺钇NiMo-MoO2异质结构电催化剂
活性稳定的电催化剂是碱水电解制氢的必要条件。然而,精确控制电催化剂和反应中间体(H2O*, H*和*OH)之间的相互作用仍然具有挑战性。在这里,我们展示了一种钇掺杂的NiMo-MoO2多相电催化剂,它有效地促进了水的解离,并加速了碱性电解质中的中间吸附/解吸动力学。在NiMo/MoO2异质结构中引入钇可诱导晶格膨胀,优化NiMo合金组分的d带中心,促进水解离和H*脱附。钇的掺杂也增加了MoO2−x中氧空位的浓度,从而加速了电荷动力学和*OH中间体从活性位点的快速排出。因此,Y-NiMo/MoO2−x异质结构表现出显著的性能,在碱性水和海水中分别只需要189和220 mV过电位就能达到2.0 A cm−2的电流密度。这项工作提供了一种策略来调节异质结构催化剂,以实现可扩展的、经济上可行的低质量水制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Potassium hydroxide
麦克林
Urea
麦克林
Ammonium fluoride
麦克林
Manganese nitrate
麦克林
Platinum on carbon
麦克林
Yttrium nitrate
阿拉丁
Ruthenium dioxide
阿拉丁
Nickel nitrate
阿拉丁
Ammonium molybdate tetrahydrate
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Designable excitonic effects in van der Waals artificial crystals with exponentially growing thickness Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion Recapitulating hypoxic metabolism in cartilaginous organoids via adaptive cell-matrix interactions enhances histone lactylation and cartilage regeneration Predicting driving comfort in autonomous vehicles using road information and multi-head attention models Unveiling ECRAM switching mechanisms using variable temperature Hall measurements for accelerated AI computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1