Shuo Zhao, Weifeng Peng, Le Zhou, Shuqi Dai, Weibin Ren, Erxiang Xu, Yao Xiao, Mufeng Zhang, Mingjun Huang, Yang Shen, Ce-Wen Nan
{"title":"Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance","authors":"Shuo Zhao, Weifeng Peng, Le Zhou, Shuqi Dai, Weibin Ren, Erxiang Xu, Yao Xiao, Mufeng Zhang, Mingjun Huang, Yang Shen, Ce-Wen Nan","doi":"10.1038/s41467-025-56069-5","DOIUrl":null,"url":null,"abstract":"<p>Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production. In this work, we synthesize metal-organic cage crosslinked nanocomposites by incorporating self-assembled metal-organic cages with amino reaction sites into the polyetherimide matrix. The in-situ crosslinking by self-assembled metal-organic cages not only achieves a homogeneous distribution of inorganic components, but also constructs robust organic-inorganic interfaces, which avoids the interfacial losses of conventional nanocomposites and improves the breakdown strength at elevated temperatures. Ultimately, the developed nanocomposites exhibit exceptionally high energy densities of 7.53 J cm<sup>−3</sup> (150 °C) and 4.55 J cm<sup>−3</sup> (200 °C) with charge-discharge efficiency of 90%.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"45 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56069-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production. In this work, we synthesize metal-organic cage crosslinked nanocomposites by incorporating self-assembled metal-organic cages with amino reaction sites into the polyetherimide matrix. The in-situ crosslinking by self-assembled metal-organic cages not only achieves a homogeneous distribution of inorganic components, but also constructs robust organic-inorganic interfaces, which avoids the interfacial losses of conventional nanocomposites and improves the breakdown strength at elevated temperatures. Ultimately, the developed nanocomposites exhibit exceptionally high energy densities of 7.53 J cm−3 (150 °C) and 4.55 J cm−3 (200 °C) with charge-discharge efficiency of 90%.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.