Matthew J. Jago, Jake K. Soley, Stepan Denisov, Calum J. Walsh, Danna R. Gifford, Benjamin P. Howden, Mato Lagator
{"title":"High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations","authors":"Matthew J. Jago, Jake K. Soley, Stepan Denisov, Calum J. Walsh, Danna R. Gifford, Benjamin P. Howden, Mato Lagator","doi":"10.1038/s41467-025-56050-2","DOIUrl":null,"url":null,"abstract":"<p>A fundamental obstacle to tackling the antimicrobial resistance crisis is identifying mutations that lead to resistance in a given genomic background and environment. We present a high-throughput technique – Quantitative Mutational Scan sequencing (QMS-seq) – that enables quantitative comparison of which genes are under antibiotic selection and captures how genetic background influences resistance evolution. We compare four <i>E. coli</i> strains exposed to ciprofloxacin, cycloserine, or nitrofurantoin and identify 812 resistance mutations, many in genes and regulatory regions not previously associated with resistance. We find that multi-drug and antibiotic-specific resistance are acquired through categorically different types of mutations, and that minor genotypic differences significantly influence evolutionary routes to resistance. By quantifying mutation frequency with single base pair resolution, QMS-seq informs about the underlying mechanisms of resistance and identifies mutational hotspots within genes. Our method provides a way to rapidly screen for resistance mutations while assessing the impact of multiple confounding factors.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"131 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56050-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A fundamental obstacle to tackling the antimicrobial resistance crisis is identifying mutations that lead to resistance in a given genomic background and environment. We present a high-throughput technique – Quantitative Mutational Scan sequencing (QMS-seq) – that enables quantitative comparison of which genes are under antibiotic selection and captures how genetic background influences resistance evolution. We compare four E. coli strains exposed to ciprofloxacin, cycloserine, or nitrofurantoin and identify 812 resistance mutations, many in genes and regulatory regions not previously associated with resistance. We find that multi-drug and antibiotic-specific resistance are acquired through categorically different types of mutations, and that minor genotypic differences significantly influence evolutionary routes to resistance. By quantifying mutation frequency with single base pair resolution, QMS-seq informs about the underlying mechanisms of resistance and identifies mutational hotspots within genes. Our method provides a way to rapidly screen for resistance mutations while assessing the impact of multiple confounding factors.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.