{"title":"Modeling of cardiac fibers as oriented liquid crystals","authors":"Nicolás A. Barnafi , Axel Osses","doi":"10.1016/j.cma.2024.117710","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we propose a mathematical model that describes the orientation of ventricular cardiac fibers. These fibers are commonly computed as the normalized gradient of certain harmonic potentials, so our work consisted in finding the equations that such a vector field satisfies, considering the unitary norm constraint. The resulting equations belong to the Frank–Oseen theory of nematic liquid crystals, which yield a bulk of mathematical properties to the cardiac fibers, such as the characterization of singularities. The numerical methods available in literature are computationally expensive and not sufficiently robust for the complex geometries obtained from the human heart, so we also propose a preconditioned projected gradient descent scheme that circumvents these difficulties in the tested scenarios. The resulting model further confirms recent experimental observations of liquid crystal behavior of soft tissue, and provides an accurate mathematical description of such behavior.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117710"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524009642","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we propose a mathematical model that describes the orientation of ventricular cardiac fibers. These fibers are commonly computed as the normalized gradient of certain harmonic potentials, so our work consisted in finding the equations that such a vector field satisfies, considering the unitary norm constraint. The resulting equations belong to the Frank–Oseen theory of nematic liquid crystals, which yield a bulk of mathematical properties to the cardiac fibers, such as the characterization of singularities. The numerical methods available in literature are computationally expensive and not sufficiently robust for the complex geometries obtained from the human heart, so we also propose a preconditioned projected gradient descent scheme that circumvents these difficulties in the tested scenarios. The resulting model further confirms recent experimental observations of liquid crystal behavior of soft tissue, and provides an accurate mathematical description of such behavior.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.