Optimized directed evolution of E. coli leucyl-tRNA synthetase adds many noncanonical amino acids into the eukaryotic genetic code including ornithine and Nε-acetyl-methyllysine
Elise D. Ficaretta, Tarah J. Yared, Subrata Bhattacharjee, Lena A. Voss, Rachel L. Huang, Abhishek Chatterjee
{"title":"Optimized directed evolution of E. coli leucyl-tRNA synthetase adds many noncanonical amino acids into the eukaryotic genetic code including ornithine and Nε-acetyl-methyllysine","authors":"Elise D. Ficaretta, Tarah J. Yared, Subrata Bhattacharjee, Lena A. Voss, Rachel L. Huang, Abhishek Chatterjee","doi":"10.1002/anie.202423172","DOIUrl":null,"url":null,"abstract":"Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative. This pair has been engineered to charge a small yet structurally diverse group of ncAAs in eukaryotic cells. However, expanding the substrate scope of EcLeuRS has been difficult due to the suboptimal yeast-based directed evolution platform used for its engineering. In this study, we address this limitation by optimizing the yeast-based directed evolution platform for efficient selection of ncAA-selective EcLeuRS mutants. Using the optimized selection system, we demonstrate rapid isolation of many novel EcLeuRS mutants capable of incorporating various ncAAs in mammalian cells, including ornithine and Nε-acetyl-methyllysine, a recently discovered post-translational modification in mammalian cells.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"27 3 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative. This pair has been engineered to charge a small yet structurally diverse group of ncAAs in eukaryotic cells. However, expanding the substrate scope of EcLeuRS has been difficult due to the suboptimal yeast-based directed evolution platform used for its engineering. In this study, we address this limitation by optimizing the yeast-based directed evolution platform for efficient selection of ncAA-selective EcLeuRS mutants. Using the optimized selection system, we demonstrate rapid isolation of many novel EcLeuRS mutants capable of incorporating various ncAAs in mammalian cells, including ornithine and Nε-acetyl-methyllysine, a recently discovered post-translational modification in mammalian cells.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.