{"title":"Dephasing enabled fast charging of quantum batteries","authors":"Rahul Shastri, Chao Jiang, Guo-Hua Xu, B. Prasanna Venkatesh, Gentaro Watanabe","doi":"10.1038/s41534-025-00959-5","DOIUrl":null,"url":null,"abstract":"<p>We propose and analyze a universal method to obtain fast charging of a quantum battery by a driven charger system using controlled, pure dephasing of the charger. While the battery displays coherent underdamped oscillations of energy for weak charger dephasing, the quantum Zeno freezing of the charger energy at high dephasing suppresses the rate of transfer of energy to the battery. Choosing an optimum dephasing rate between the regimes leads to a fast charging of the battery. We illustrate our results with the charger and battery modeled by either two-level systems or harmonic oscillators. Apart from the fast charging, the dephasing also renders the charging performance more robust to detuning between the charger, drive, and battery frequencies for the two-level systems case.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"98 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00959-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and analyze a universal method to obtain fast charging of a quantum battery by a driven charger system using controlled, pure dephasing of the charger. While the battery displays coherent underdamped oscillations of energy for weak charger dephasing, the quantum Zeno freezing of the charger energy at high dephasing suppresses the rate of transfer of energy to the battery. Choosing an optimum dephasing rate between the regimes leads to a fast charging of the battery. We illustrate our results with the charger and battery modeled by either two-level systems or harmonic oscillators. Apart from the fast charging, the dephasing also renders the charging performance more robust to detuning between the charger, drive, and battery frequencies for the two-level systems case.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.