Noise-agnostic quantum error mitigation with data augmented neural models

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2025-01-18 DOI:10.1038/s41534-025-00960-y
Manwen Liao, Yan Zhu, Giulio Chiribella, Yuxiang Yang
{"title":"Noise-agnostic quantum error mitigation with data augmented neural models","authors":"Manwen Liao, Yan Zhu, Giulio Chiribella, Yuxiang Yang","doi":"10.1038/s41534-025-00960-y","DOIUrl":null,"url":null,"abstract":"<p>Quantum error mitigation, a data processing technique for recovering the statistics of target processes from their noisy version, is a crucial task for near-term quantum technologies. Most existing methods require prior knowledge of the noise model or the noise parameters. Deep neural networks have the potential to lift this requirement, but current models require training data produced by ideal processes in the absence of noise. Here we build a neural model that achieves quantum error mitigation without any prior knowledge of the noise and without training on noise-free data. To achieve this feature, we introduce a quantum augmentation technique for error mitigation. Our approach applies to quantum circuits and to the dynamics of many-body and continuous-variable quantum systems, accommodating various types of noise models. We demonstrate its effectiveness by testing it both on simulated noisy circuits and on real quantum hardware.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"37 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00960-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum error mitigation, a data processing technique for recovering the statistics of target processes from their noisy version, is a crucial task for near-term quantum technologies. Most existing methods require prior knowledge of the noise model or the noise parameters. Deep neural networks have the potential to lift this requirement, but current models require training data produced by ideal processes in the absence of noise. Here we build a neural model that achieves quantum error mitigation without any prior knowledge of the noise and without training on noise-free data. To achieve this feature, we introduce a quantum augmentation technique for error mitigation. Our approach applies to quantum circuits and to the dynamics of many-body and continuous-variable quantum systems, accommodating various types of noise models. We demonstrate its effectiveness by testing it both on simulated noisy circuits and on real quantum hardware.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据增强神经模型的噪声不可知量子误差缓解
量子误差缓解是一种数据处理技术,用于从目标过程的噪声版本中恢复统计信息,是近期量子技术的关键任务。大多数现有的方法需要事先知道噪声模型或噪声参数。深度神经网络有可能提高这一要求,但目前的模型需要在没有噪声的理想过程中产生训练数据。在这里,我们建立了一个神经模型,在没有任何先验知识的情况下实现量子误差缓解,也没有对无噪声数据进行训练。为了实现这一特性,我们引入了一种量子增强技术来减少错误。我们的方法适用于量子电路和多体和连续变量量子系统的动力学,适应各种类型的噪声模型。我们通过在模拟噪声电路和实际量子硬件上的测试证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Faster-than-Clifford simulations of entanglement purification circuits and their full-stack optimization Fabrication and characterization of low-loss Al/Si/Al parallel plate capacitors for superconducting quantum information applications Long-time error-mitigating simulation of open quantum systems on near term quantum computers Dephasing enabled fast charging of quantum batteries Noise-agnostic quantum error mitigation with data augmented neural models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1