Liquid-infused nanostructured composite as a high-performance thermal interface material for effective cooling

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-18 DOI:10.1038/s41467-025-56163-8
Rui Cheng, Qixian Wang, Zexiao Wang, Lin Jing, Ana V. Garcia-Caraveo, Zhuo Li, Yibai Zhong, Xiu Liu, Xiao Luo, Tianyi Huang, Hyeong Seok Yun, Hakan Salihoglu, Loren Russell, Navid Kazem, Tianyi Chen, Sheng Shen
{"title":"Liquid-infused nanostructured composite as a high-performance thermal interface material for effective cooling","authors":"Rui Cheng, Qixian Wang, Zexiao Wang, Lin Jing, Ana V. Garcia-Caraveo, Zhuo Li, Yibai Zhong, Xiu Liu, Xiao Luo, Tianyi Huang, Hyeong Seok Yun, Hakan Salihoglu, Loren Russell, Navid Kazem, Tianyi Chen, Sheng Shen","doi":"10.1038/s41467-025-56163-8","DOIUrl":null,"url":null,"abstract":"<p>Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability. We report a strategy to create printable, high-performance liquid-infused nanostructured composites, comprising a mechanically soft and thermally conductive double-sided Cu nanowire array scaffold infused with a customized thermal-bridge liquid that suppresses contact thermal resistance. The liquid infusion concept is versatile for a broad range of thermal interface applications. Remarkably, the liquid metal infused nanostructured composite exhibits an ultra-low thermal resistance &lt;1 mm² K W<sup>-1</sup> at interface, outperforming state-of-the-art thermal interface materials on chip-cooling. The high reliability of the nanostructured composites enables undegraded performance through extreme temperature cycling. We envision liquid-infused nanostructured composites as a universal thermal interface solution for cooling applications in data centers, GPU/CPU systems, solid-state lasers, and LEDs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"68 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56163-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability. We report a strategy to create printable, high-performance liquid-infused nanostructured composites, comprising a mechanically soft and thermally conductive double-sided Cu nanowire array scaffold infused with a customized thermal-bridge liquid that suppresses contact thermal resistance. The liquid infusion concept is versatile for a broad range of thermal interface applications. Remarkably, the liquid metal infused nanostructured composite exhibits an ultra-low thermal resistance <1 mm² K W-1 at interface, outperforming state-of-the-art thermal interface materials on chip-cooling. The high reliability of the nanostructured composites enables undegraded performance through extreme temperature cycling. We envision liquid-infused nanostructured composites as a universal thermal interface solution for cooling applications in data centers, GPU/CPU systems, solid-state lasers, and LEDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液体注入纳米结构复合材料作为高效冷却的高性能热界面材料
对于能量密集的设备和系统来说,有效的散热仍然是一个巨大的挑战。随着异质集成在电子领域的发展,界面的热阻已成为热管理的关键瓶颈。然而,现有的热界面解决方案受到高热阻或可靠性差的限制。我们报告了一种创建可打印的高性能液体注入纳米结构复合材料的策略,包括机械柔软和导热的双面铜纳米线阵列支架,注入定制的热桥液体,抑制接触热阻。液体输液的概念是通用的广泛的热界面应用。值得注意的是,注入液态金属的纳米结构复合材料在界面处表现出超低的热阻<;1 mm²K W-1,在芯片冷却方面优于最先进的热界面材料。纳米结构复合材料的高可靠性使其在极端温度循环下的性能不会下降。我们设想液体注入纳米结构复合材料作为一种通用的热界面解决方案,用于数据中心、GPU/CPU系统、固态激光器和led的冷却应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Seasonal recurrence and modular assembly of an Arctic pelagic marine microbiome Reply to: Should we be careful with exercise in post-exertional malaise after Long COVID? A humanized NOVA1 splicing factor alters mouse vocal communications Strong and early monkeypox virus-specific immunity associated with mild disease after intradermal clade-IIb-infection in CAST/EiJ-mice Should we be careful with exercise in post-exertional malaise after long COVID?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1