Predictive distributions and the market return: The role of market illiquidity

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE European Journal of Operational Research Pub Date : 2025-01-13 DOI:10.1016/j.ejor.2025.01.006
Michael Ellington , Maria Kalli
{"title":"Predictive distributions and the market return: The role of market illiquidity","authors":"Michael Ellington ,&nbsp;Maria Kalli","doi":"10.1016/j.ejor.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper evaluates the role of volatility-free stock market illiquidity proxies in forecasting monthly stock market returns. We adopt a probabilistic approach to multivariate time-series modelling using Bayesian nonparametric vector autoregressions. These models flexibly capture complex joint dynamics among financial variables through data-driven regime switching. Out-of-sample forecasts maintain accuracy as the horizon increases. Adding illiquidity generates statistical improvements in out-of-sample predictive accuracy. We highlight the operational importance of market illiquidity after selecting the most appropriate forecasting model that delivers profitable strategies that outperform a range of multivariate models; as well as the historical mean.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"323 1","pages":"Pages 309-322"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221725000268","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper evaluates the role of volatility-free stock market illiquidity proxies in forecasting monthly stock market returns. We adopt a probabilistic approach to multivariate time-series modelling using Bayesian nonparametric vector autoregressions. These models flexibly capture complex joint dynamics among financial variables through data-driven regime switching. Out-of-sample forecasts maintain accuracy as the horizon increases. Adding illiquidity generates statistical improvements in out-of-sample predictive accuracy. We highlight the operational importance of market illiquidity after selecting the most appropriate forecasting model that delivers profitable strategies that outperform a range of multivariate models; as well as the historical mean.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测分布与市场回报:市场流动性不足的作用
本文评估无波动股票市场非流动性代理在预测股票市场月收益中的作用。我们采用概率方法对多变量时间序列建模使用贝叶斯非参数向量自回归。这些模型通过数据驱动的制度切换,灵活地捕捉金融变量之间复杂的联合动态。随着视界的增加,样本外预测保持准确性。增加非流动性可以提高样本外预测的准确性。在选择最合适的预测模型后,我们强调了市场非流动性的操作重要性,该模型提供了优于一系列多元模型的盈利策略;以及历史平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
期刊最新文献
A nonparametric online control chart for monitoring crowd density using relative density-ratio estimation Cyclic stochastic two-echelon inventory routing for an application in medical supply A logic-based Benders decomposition approach for a fuel delivery problem with time windows, unsplit compartments, and split deliveries Editorial Board Heteroscedasticity-aware stratified sampling to improve uplift modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1