Gnanakumar Thedchanamoorthy , Michael Bewong , Meisam Mohammady , Tanveer Zia , Md Zahidul Islam
{"title":"UD-LDP: A Technique for optimally catalyzing user driven Local Differential Privacy","authors":"Gnanakumar Thedchanamoorthy , Michael Bewong , Meisam Mohammady , Tanveer Zia , Md Zahidul Islam","doi":"10.1016/j.future.2025.107712","DOIUrl":null,"url":null,"abstract":"<div><div>Local Differential Privacy (LDP) has emerged as a popular mechanism for crowd-sourced data collection, but enforcing a uniform level of perturbation may hinder the participation of individuals with higher privacy needs, while high privacy levels that satisfy more users can reduce utility. To address this, we propose a cohort-based mechanism that allows participants to choose the privacy level from a predefined set. We investigate optimal cohort configurations and uncover insights about utility convexity, enabling the identification of privacy-utility balanced settings. Our proposed mechanism, called UD-LDP, empowers users, promotes transparency, and facilitates suitable privacy budget selection. We demonstrate the effectiveness of cohortisation through experiments on synthetic and real-world datasets.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"166 ","pages":"Article 107712"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X2500007X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Local Differential Privacy (LDP) has emerged as a popular mechanism for crowd-sourced data collection, but enforcing a uniform level of perturbation may hinder the participation of individuals with higher privacy needs, while high privacy levels that satisfy more users can reduce utility. To address this, we propose a cohort-based mechanism that allows participants to choose the privacy level from a predefined set. We investigate optimal cohort configurations and uncover insights about utility convexity, enabling the identification of privacy-utility balanced settings. Our proposed mechanism, called UD-LDP, empowers users, promotes transparency, and facilitates suitable privacy budget selection. We demonstrate the effectiveness of cohortisation through experiments on synthetic and real-world datasets.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.