Zhixian Lv , Xin Song , Jiachen Feng , Qing Xia , Binhu Xia , Yibao Li
{"title":"Reduced-order prediction model for the Cahn–Hilliard equation based on deep learning","authors":"Zhixian Lv , Xin Song , Jiachen Feng , Qing Xia , Binhu Xia , Yibao Li","doi":"10.1016/j.enganabound.2025.106118","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an end-to-end deep learning framework for nonlinear reduced-order modeling and prediction, combining Variational Autoencoders (VAE) for feature extraction and Long Short-Term Memory (LSTM) networks for temporal prediction. The framework simplifies the modeling process by integrating multiple steps into a unified architecture, improving both design and training efficiency. The VAE compresses input data into a low-dimensional latent space while using a progressive channel reduction strategy to retain key features and minimize redundancy. The LSTM network captures temporal dependencies, ensuring accurate predictions based on historical data. The framework is validated through applications to the Cahn–Hilliard (CH) equation, demonstrating superior performance over traditional dimensionality reduction and prediction models. A comprehensive hyperparameter analysis identifies optimal configurations, and the model’s extrapolation capabilities and computational efficiency are thoroughly assessed. Results highlight the framework’s potential as an effective tool for modeling and predicting complex dynamic systems governed by partial differential equations.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"172 ","pages":"Article 106118"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000062","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an end-to-end deep learning framework for nonlinear reduced-order modeling and prediction, combining Variational Autoencoders (VAE) for feature extraction and Long Short-Term Memory (LSTM) networks for temporal prediction. The framework simplifies the modeling process by integrating multiple steps into a unified architecture, improving both design and training efficiency. The VAE compresses input data into a low-dimensional latent space while using a progressive channel reduction strategy to retain key features and minimize redundancy. The LSTM network captures temporal dependencies, ensuring accurate predictions based on historical data. The framework is validated through applications to the Cahn–Hilliard (CH) equation, demonstrating superior performance over traditional dimensionality reduction and prediction models. A comprehensive hyperparameter analysis identifies optimal configurations, and the model’s extrapolation capabilities and computational efficiency are thoroughly assessed. Results highlight the framework’s potential as an effective tool for modeling and predicting complex dynamic systems governed by partial differential equations.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.