Alexander A. Kharlamov, Aleksey N. Raskhodchikov, Maria Pilgun
{"title":"Social media actors: perception and optimization of influence across different types","authors":"Alexander A. Kharlamov, Aleksey N. Raskhodchikov, Maria Pilgun","doi":"10.1007/s10878-024-01238-3","DOIUrl":null,"url":null,"abstract":"<p>The paper deals with the analysis of the communicative behavior of various types of actors, speech perception and optimization of influence based on social media data and is an extended version of the report presented at CSoNet 2020 and published based on the deliverables of the conference. The paper proposes an improved methodology that is tested on the new material of conflicts regarding urban planning. The research was conducted on the material of social media concerning the construction of the South-East Chord in Moscow (Russia). The study involved a cross-disciplinary approach using neural network technologies, complex networks analysis. The dataset included social networks, microblogs, forums, blogs, videos, reviews. This paper presents the semantic model for the influence maximization analysis in social networks using neural network technologies, also proposed a variant of analyzing the situation with individual and collective actors, multiple opinion leaders, with a dynamic transformation of the hierarchy and ratings according to various parameters.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"107 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01238-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper deals with the analysis of the communicative behavior of various types of actors, speech perception and optimization of influence based on social media data and is an extended version of the report presented at CSoNet 2020 and published based on the deliverables of the conference. The paper proposes an improved methodology that is tested on the new material of conflicts regarding urban planning. The research was conducted on the material of social media concerning the construction of the South-East Chord in Moscow (Russia). The study involved a cross-disciplinary approach using neural network technologies, complex networks analysis. The dataset included social networks, microblogs, forums, blogs, videos, reviews. This paper presents the semantic model for the influence maximization analysis in social networks using neural network technologies, also proposed a variant of analyzing the situation with individual and collective actors, multiple opinion leaders, with a dynamic transformation of the hierarchy and ratings according to various parameters.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.