Tiantian Liang, Zhen Lyu, Ye Wang, Wenyan Zhao, Ruocheng Sang, Gui-Juan Cheng, Fei Ye
{"title":"Light-promoted aromatic denitrative chlorination","authors":"Tiantian Liang, Zhen Lyu, Ye Wang, Wenyan Zhao, Ruocheng Sang, Gui-Juan Cheng, Fei Ye","doi":"10.1038/s41557-024-01728-1","DOIUrl":null,"url":null,"abstract":"<p>Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the C<sub>Ar</sub>–NO<sub>2</sub> bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations. Here we develop a general denitrative chlorination reaction under visible-light irradiation, in which the chlorine radical replaces the nitro moiety through the cleavage of the C<sub>Ar</sub>–NO<sub>2</sub> bond. This practical method works with a wide range of unactivated nitro(hetero)arenes and nitroalkenes, is not sensitive to air or moisture and can proceed smoothly on a decagram scale. This transformation differs fundamentally from previous nucleophilic aromatic substitution reactions under thermal conditions in both synthesis and mechanism. Density functional theory calculations reveal the possible pathway for the substitution reaction.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"74 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01728-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the CAr–NO2 bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations. Here we develop a general denitrative chlorination reaction under visible-light irradiation, in which the chlorine radical replaces the nitro moiety through the cleavage of the CAr–NO2 bond. This practical method works with a wide range of unactivated nitro(hetero)arenes and nitroalkenes, is not sensitive to air or moisture and can proceed smoothly on a decagram scale. This transformation differs fundamentally from previous nucleophilic aromatic substitution reactions under thermal conditions in both synthesis and mechanism. Density functional theory calculations reveal the possible pathway for the substitution reaction.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.