Luling Wang, Chi Xu, Binpeng Zhu, Jizi Liu, Ningning Liang, Runchang Liu, Yang Cao, Yonghao Zhao
{"title":"Short-range ordering suppresses mechanical annealing in CoCrNi alloy nanopillars","authors":"Luling Wang, Chi Xu, Binpeng Zhu, Jizi Liu, Ningning Liang, Runchang Liu, Yang Cao, Yonghao Zhao","doi":"10.1016/j.ijmecsci.2025.109979","DOIUrl":null,"url":null,"abstract":"Comprehensive atomic simulations have been conducted to compare the effects of pre-existing dislocation densities on the intermittent plastic behaviors of CoCrNi medium-entropy alloy (MEA) single-crystalline nanopillars with that of pure metal nanopillars. In contrast to pure metal nanopillars that demonstrate prolonged nearly elastic loading and reloading segments, the MEA nanopillars show short loading and reloading segments and high dislocation densities throughout the entire deformation process, suggesting that mechanical annealing is substantially suppressed in MEA nanopillars. The closely spaced junctions between the short-range-order domains and adjacent Ni clusters exert exceptionally strong local Peierls friction forces that not only slow down dislocation slip, but also increase the probability for dislocation entanglement. As a result, high densities of dislocations can be accumulated during the plastic deformation of the MEA nanopillars, leading to suppression of mechanical annealing and transition from exhaustion hardening to strain hardening. This work provides new insights to the plastic deformation of MEA nanopillars that are distinctive from pure metal nanopillars.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"230 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2025.109979","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehensive atomic simulations have been conducted to compare the effects of pre-existing dislocation densities on the intermittent plastic behaviors of CoCrNi medium-entropy alloy (MEA) single-crystalline nanopillars with that of pure metal nanopillars. In contrast to pure metal nanopillars that demonstrate prolonged nearly elastic loading and reloading segments, the MEA nanopillars show short loading and reloading segments and high dislocation densities throughout the entire deformation process, suggesting that mechanical annealing is substantially suppressed in MEA nanopillars. The closely spaced junctions between the short-range-order domains and adjacent Ni clusters exert exceptionally strong local Peierls friction forces that not only slow down dislocation slip, but also increase the probability for dislocation entanglement. As a result, high densities of dislocations can be accumulated during the plastic deformation of the MEA nanopillars, leading to suppression of mechanical annealing and transition from exhaustion hardening to strain hardening. This work provides new insights to the plastic deformation of MEA nanopillars that are distinctive from pure metal nanopillars.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.