Regulating Water Molecules via Bioinspired Covalent Organic Framework Membranes for Zn Metal Anodes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-19 DOI:10.1002/anie.202424184
Sida Zhang, Jiashu Chen, Weigen Chen, Yiwen Su, Qianzhi Gou, Ruduan Yuan, Ziyi Wang, Kaixin Wang, Wentao Zhang, Xiqian Hu, Zhixian Zhang, Pinyi Wang, Fu Wan, Jie Liu, Beibei Li, Yifei Wang, Guangping Zheng, Meng Li, Jingyu Sun
{"title":"Regulating Water Molecules via Bioinspired Covalent Organic Framework Membranes for Zn Metal Anodes","authors":"Sida Zhang, Jiashu Chen, Weigen Chen, Yiwen Su, Qianzhi Gou, Ruduan Yuan, Ziyi Wang, Kaixin Wang, Wentao Zhang, Xiqian Hu, Zhixian Zhang, Pinyi Wang, Fu Wan, Jie Liu, Beibei Li, Yifei Wang, Guangping Zheng, Meng Li, Jingyu Sun","doi":"10.1002/anie.202424184","DOIUrl":null,"url":null,"abstract":"The Zn metal anode in aqueous zinc-ion batteries (AZIBs) faces daunting challenges including undesired water-induced parasitic reactions and sluggish ion migration kinetics. Herein, we develop three-dimensional covalent organic framework (COF) membranes with bioinspired ion channels toward stabilized Zn anodes. These COFs, featured by zincophilic pyridine-N sites, enable effective regulation of water molecules at the anode-electrolyte interphase. Systematic experimental analysis and theoretical simulations reveal the optimized COF-320N membrane functions as ion pumps, accordingly facilitating Zn2+ transport and inhibiting direct contact between Zn anode and free water molecules. Consequently, the bio-inspired strategy achieves improved Zn2+ transference number (0.61), rapid de-solvation kinetics, and suppressed hydrogen evolution. The assembled Zn||MnO2 pouch cell integrated with COF-320N membrane exhibits favorable electrochemical performances. Such a bioinspired concept for optimizing Zn anodes opens new pathways in developing advanced energy storage devices.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Zn metal anode in aqueous zinc-ion batteries (AZIBs) faces daunting challenges including undesired water-induced parasitic reactions and sluggish ion migration kinetics. Herein, we develop three-dimensional covalent organic framework (COF) membranes with bioinspired ion channels toward stabilized Zn anodes. These COFs, featured by zincophilic pyridine-N sites, enable effective regulation of water molecules at the anode-electrolyte interphase. Systematic experimental analysis and theoretical simulations reveal the optimized COF-320N membrane functions as ion pumps, accordingly facilitating Zn2+ transport and inhibiting direct contact between Zn anode and free water molecules. Consequently, the bio-inspired strategy achieves improved Zn2+ transference number (0.61), rapid de-solvation kinetics, and suppressed hydrogen evolution. The assembled Zn||MnO2 pouch cell integrated with COF-320N membrane exhibits favorable electrochemical performances. Such a bioinspired concept for optimizing Zn anodes opens new pathways in developing advanced energy storage devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生物启发共价有机框架膜调控锌金属阳极水分子
含水锌离子电池(AZIBs)中的锌金属阳极面临着严峻的挑战,包括不良的水诱导寄生反应和缓慢的离子迁移动力学。在此,我们开发了具有生物激发离子通道的三维共价有机框架(COF)膜,以稳定Zn阳极。这些COFs具有亲锌吡啶- n位点,能够有效地调节阳极-电解质界面的水分子。系统的实验分析和理论模拟表明,优化后的COF-320N膜具有离子泵的功能,有利于Zn2+的输运,抑制Zn阳极与游离水分子的直接接触。因此,仿生策略提高了Zn2+转移数(0.61),快速脱溶剂动力学,抑制了氢的析出。与COF-320N膜集成的组装Zn||MnO2袋电池表现出良好的电化学性能。这种优化锌阳极的生物灵感概念为开发先进的储能设备开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
A Metastable Oxygen Redox Cathode for Lithium-Ion Batteries Cyclometalated Iridium(III) Schiff Base Complexes for Chemiluminogenic Bioprobes Robust Fully Screen-printed Perovskite Solar Cells Based on Synergistic Ostwald Ripening Improving the Methane Oxidation by Self-Adaptive Optimization of Liquid-Metal Catalysts Spatial Confinement of Dual Activatable DNAzyme Sensor in Cavity of DNA Nanocage for Logical Molecular Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1