Ye Yuan, Xucui Qian, Lulu Zhang, Wanxin Yin, Tianming Chen, Zhaoxia Li, Cheng Ding, Bo Wang, Bin Liang, Aijie Wang, Yang Liu, Fan Chen
{"title":"Tailoring microbial redox with alternating current for efficient mineralization of refractory organic nitrogen compounds in wastewater","authors":"Ye Yuan, Xucui Qian, Lulu Zhang, Wanxin Yin, Tianming Chen, Zhaoxia Li, Cheng Ding, Bo Wang, Bin Liang, Aijie Wang, Yang Liu, Fan Chen","doi":"10.1038/s41545-025-00439-5","DOIUrl":null,"url":null,"abstract":"<p>Traditional biological wastewater treatment struggles to efficiently remove refractory organic nitrogen compounds (RONCs). This study demonstrates the potential of alternating current (AC)-driven bioelectrodes for deep mineralization of nitrobenzene (NB) by coupling in situ reduction and oxidation reactions. Sine-wave AC bioelectrodes overcome the limitations of direct current (DC) systems, achieving 97.6% NB reduction, 90.9% intermediate mineralization, and 80.8% total nitrogen removal while reducing energy consumption by 22.3%. AC stimulation enhances biofilm formation and bidirectional electrocatalytic activity, leading to higher biomass and electron utilization efficiency. Multi-omics analysis shows enrichment of functional microbial consortia involved in NB reduction, aromatic compound oxidation, ammonia oxidation, nitrate/nitrite reduction, and electron transfer, with upregulated enzyme gene expression. Carbon metabolites from catechol meta-cleavage support nitro-reduction, denitrification, and cell viability without external carbon sources. Nitrification-denitrification is the primary pathway for inorganic nitrogen removal. This AC bioelectrode offers an efficient, low-carbon solution for RONC mineralization in wastewater.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"84 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00439-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional biological wastewater treatment struggles to efficiently remove refractory organic nitrogen compounds (RONCs). This study demonstrates the potential of alternating current (AC)-driven bioelectrodes for deep mineralization of nitrobenzene (NB) by coupling in situ reduction and oxidation reactions. Sine-wave AC bioelectrodes overcome the limitations of direct current (DC) systems, achieving 97.6% NB reduction, 90.9% intermediate mineralization, and 80.8% total nitrogen removal while reducing energy consumption by 22.3%. AC stimulation enhances biofilm formation and bidirectional electrocatalytic activity, leading to higher biomass and electron utilization efficiency. Multi-omics analysis shows enrichment of functional microbial consortia involved in NB reduction, aromatic compound oxidation, ammonia oxidation, nitrate/nitrite reduction, and electron transfer, with upregulated enzyme gene expression. Carbon metabolites from catechol meta-cleavage support nitro-reduction, denitrification, and cell viability without external carbon sources. Nitrification-denitrification is the primary pathway for inorganic nitrogen removal. This AC bioelectrode offers an efficient, low-carbon solution for RONC mineralization in wastewater.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.