Si-Qi Qiu, Xiao-Feng He, Xiao-Long Liang, Guang-Yuan Shi, Meng-Long Zhao, Fan Li, Zhi-Yong Wu, Jie Tian, Tian-Tian Zhai, Yang Du
{"title":"GLUT1 as a generic biomarker enables near-infrared fluorescence molecular imaging guided precise intraoperative tumor detection in breast cancer","authors":"Si-Qi Qiu, Xiao-Feng He, Xiao-Long Liang, Guang-Yuan Shi, Meng-Long Zhao, Fan Li, Zhi-Yong Wu, Jie Tian, Tian-Tian Zhai, Yang Du","doi":"10.1007/s00259-025-07095-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Precise tumor excision is important but challenging in breast-conserving surgery (BCS). Tumor-specific fluorescence imaging may be used for intraoperative tumor detection and, therefore, to guide precise tumor excision. The aims of this study are to develop a glucose transporter 1 (GLUT1)-targeted near-infrared fluorescence tracer and evaluate its accuracy for breast cancer detection using fresh surgical breast specimens.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Bioinformatic analysis was performed to compare GLUT1 expression between breast cancer and normal breast tissues. A GLUT1-targeted fluorescence imaging tracer WZB117-CY7.5 was developed. In combination with fluorescence imaging (FMI), its binding specificity to GLUT1 was examined in in vitro breast cancer cell experiments, in vivo 4T1 breast tumor-bearing mouse models, and 60 freshly resected human breast tumor tissues. The diagnostic accuracy of WZB117-CY7.5, was evaluated in fresh specimens derived from 60 patients diagnosed with breast cancer.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>GLUT1 expression is higher in breast cancer tissues compared with normal tissues. WZB117-CY7.5 specifically bound to breast cancer cells in in vitro cell experiments and accumulated in tumor areas in a 4T1 tumor-bearing mice after intravenous injection by FMI. Moreover, WZB117-CY7.5 specifically bound to freshly resected human breast cancer and demonstrated excellent diagnostic performance in discriminating breast cancer, irrespective of cancer subtype, from normal breast tissue on fresh surgically resected breast tissues.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>WZB117-CY7.5 showed high accuracy in intraoperative breast cancer detection, irrespective of the cancer subtype. This highlights its potential for clinical applications as a generic tracer for fluorescence image-guided surgery (FIGS) in BCS and fluorescence image-guided pathology for tissue sampling.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":"57 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-025-07095-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Precise tumor excision is important but challenging in breast-conserving surgery (BCS). Tumor-specific fluorescence imaging may be used for intraoperative tumor detection and, therefore, to guide precise tumor excision. The aims of this study are to develop a glucose transporter 1 (GLUT1)-targeted near-infrared fluorescence tracer and evaluate its accuracy for breast cancer detection using fresh surgical breast specimens.
Methods
Bioinformatic analysis was performed to compare GLUT1 expression between breast cancer and normal breast tissues. A GLUT1-targeted fluorescence imaging tracer WZB117-CY7.5 was developed. In combination with fluorescence imaging (FMI), its binding specificity to GLUT1 was examined in in vitro breast cancer cell experiments, in vivo 4T1 breast tumor-bearing mouse models, and 60 freshly resected human breast tumor tissues. The diagnostic accuracy of WZB117-CY7.5, was evaluated in fresh specimens derived from 60 patients diagnosed with breast cancer.
Results
GLUT1 expression is higher in breast cancer tissues compared with normal tissues. WZB117-CY7.5 specifically bound to breast cancer cells in in vitro cell experiments and accumulated in tumor areas in a 4T1 tumor-bearing mice after intravenous injection by FMI. Moreover, WZB117-CY7.5 specifically bound to freshly resected human breast cancer and demonstrated excellent diagnostic performance in discriminating breast cancer, irrespective of cancer subtype, from normal breast tissue on fresh surgically resected breast tissues.
Conclusions
WZB117-CY7.5 showed high accuracy in intraoperative breast cancer detection, irrespective of the cancer subtype. This highlights its potential for clinical applications as a generic tracer for fluorescence image-guided surgery (FIGS) in BCS and fluorescence image-guided pathology for tissue sampling.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.