Brian Rost, Lorenzo Del Re, Nathan Earnest, Alexander F. Kemper, Barbara Jones, James K. Freericks
{"title":"Long-time error-mitigating simulation of open quantum systems on near term quantum computers","authors":"Brian Rost, Lorenzo Del Re, Nathan Earnest, Alexander F. Kemper, Barbara Jones, James K. Freericks","doi":"10.1038/s41534-025-00964-8","DOIUrl":null,"url":null,"abstract":"<p>We study an open quantum system simulation on quantum hardware, which demonstrates robustness to hardware errors even with deep circuits containing up to two thousand entangling gates. We simulate two systems of electrons coupled to an infinite thermal bath: 1) a system of dissipative free electrons in a driving electric field; and 2) the thermalization of two interacting electrons in a single orbital in a magnetic field—the Hubbard atom. These problems are solved using IBM quantum computers, showing no signs of decreasing fidelity at long times. Our results demonstrate that algorithms for simulating open quantum systems are able to far outperform similarly complex non-dissipative algorithms on noisy hardware. Our two examples show promise that the driven-dissipative quantum many-body problem can eventually be solved on quantum computers.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"57 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00964-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study an open quantum system simulation on quantum hardware, which demonstrates robustness to hardware errors even with deep circuits containing up to two thousand entangling gates. We simulate two systems of electrons coupled to an infinite thermal bath: 1) a system of dissipative free electrons in a driving electric field; and 2) the thermalization of two interacting electrons in a single orbital in a magnetic field—the Hubbard atom. These problems are solved using IBM quantum computers, showing no signs of decreasing fidelity at long times. Our results demonstrate that algorithms for simulating open quantum systems are able to far outperform similarly complex non-dissipative algorithms on noisy hardware. Our two examples show promise that the driven-dissipative quantum many-body problem can eventually be solved on quantum computers.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.