Sun-simulated-driven production of high-purity methanol from carbon dioxide

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-20 DOI:10.1038/s41467-025-56101-8
Jiqing Jiao, Yanbin Ma, Xiaoqian Han, Awu Ergu, Chao Zhang, Pingping Chen, Wei Liu, Qiquan Luo, Zhaolin Shi, Han Xu, Chen Chen, Yaguang Li, Tongbu Lu
{"title":"Sun-simulated-driven production of high-purity methanol from carbon dioxide","authors":"Jiqing Jiao, Yanbin Ma, Xiaoqian Han, Awu Ergu, Chao Zhang, Pingping Chen, Wei Liu, Qiquan Luo, Zhaolin Shi, Han Xu, Chen Chen, Yaguang Li, Tongbu Lu","doi":"10.1038/s41467-025-56101-8","DOIUrl":null,"url":null,"abstract":"<p>CO<sub>2</sub> conversion to CH<sub>3</sub>OH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO<sub>2</sub> reduction to CH<sub>3</sub>OH can only produce CH<sub>3</sub>OH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO<sub>2</sub> electroreduction to syngas, and further photothermal conversion into high-purity CH<sub>3</sub>OH (volume fraction &gt; 97%). We construct a self-supporting electrocatalyst featuring dual active sites of Ni single atoms and encapsulated Co nanoparticles, which could produce syngas with a constant H<sub>2</sub>:CO ratio of ~2 via solar-powered CO<sub>2</sub> electroreduction. The generated syngas is subsequently fed into the photothermal module, which could produce high-purity CH<sub>3</sub>OH under 1 sun-light irradiation, with a rate of 0.238 g<sub>CH3OH</sub> g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>. This work demonstrates a feasible and sustainable route for directly converting CO<sub>2</sub> into high-purity CH<sub>3</sub>OH.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"71 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56101-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 conversion to CH3OH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO2 reduction to CH3OH can only produce CH3OH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO2 electroreduction to syngas, and further photothermal conversion into high-purity CH3OH (volume fraction > 97%). We construct a self-supporting electrocatalyst featuring dual active sites of Ni single atoms and encapsulated Co nanoparticles, which could produce syngas with a constant H2:CO ratio of ~2 via solar-powered CO2 electroreduction. The generated syngas is subsequently fed into the photothermal module, which could produce high-purity CH3OH under 1 sun-light irradiation, with a rate of 0.238 gCH3OH gcat–1 h–1. This work demonstrates a feasible and sustainable route for directly converting CO2 into high-purity CH3OH.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳模拟驱动从二氧化碳中生产高纯度甲醇
在温和的条件下,二氧化碳转化为CH3OH是特别有趣的,但相当具有挑战性。电催化和热催化CO2还原为CH3OH都只能产生低浓度的CH3OH(通常与水混合),需要能源密集型的净化过程。本文设计了一个模拟太阳驱动的串联催化系统,该系统包括CO2电还原制合成气,并进一步光热转化为高纯度CH3OH(体积分数>;97%)。我们构建了一种具有Ni单原子和封装Co纳米粒子双活性位点的自支撑型电催化剂,该催化剂可以通过太阳能CO2电还原产生H2: Co比为~2的合成气。生成的合成气随后进入光热模块,在1次太阳光照射下可产生高纯度的CH3OH,速率为0.238 gCH3OH gcat-1 h-1。这项工作证明了直接将二氧化碳转化为高纯度CH3OH的可行和可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
The O-glycosyltransferase C1GALT1 promotes EWSR1::FLI1 expression and is a therapeutic target for Ewing sarcoma Deep learning to decode sites of RNA translation in normal and cancerous tissues Leveraging the water-environment-health nexus to characterize sustainable water purification solutions Structurally convergent antibodies derived from different vaccine strategies target the influenza virus HA anchor epitope with a subset of VH3 and VK3 genes Nuclear ANLN regulates transcription initiation related Pol II clustering and target gene expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1