Dehydration-enhanced Ion Recognition of Triazine Covalent Organic Frameworks for High-resolution Li+/Mg2+ Separation

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-21 DOI:10.1002/anie.202422423
Wentong Meng, Sifan Chen, Ming Wu, Feng Gao, Prof. Yang Hou, Prof. Xiaoli Zhan, Wei Hu, Lijun Liang, Prof. Qinghua Zhang
{"title":"Dehydration-enhanced Ion Recognition of Triazine Covalent Organic Frameworks for High-resolution Li+/Mg2+ Separation","authors":"Wentong Meng,&nbsp;Sifan Chen,&nbsp;Ming Wu,&nbsp;Feng Gao,&nbsp;Prof. Yang Hou,&nbsp;Prof. Xiaoli Zhan,&nbsp;Wei Hu,&nbsp;Lijun Liang,&nbsp;Prof. Qinghua Zhang","doi":"10.1002/anie.202422423","DOIUrl":null,"url":null,"abstract":"<p>The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li<sup>+</sup> and Mg<sup>2+</sup> that enables fast Li<sup>+</sup> transport while almost completely inhibiting Mg<sup>2+</sup> permeation. The remarkably high rejection of Mg<sup>2+</sup> by the COF membrane is achieved via imposed ion dehydration and the construction of the energy well. The proper hydrophilic environment of the COF channel promotes the dissociation of Li<sup>+</sup> from the negatively charged functional groups, allowing Li<sup>+</sup> for hopping transport supported by the sulfonate side-chains to shorten the diffusion path of Li<sup>+</sup>. Under high-salinity electrodialysis conditions, the COF membrane demonstrates robust Li<sup>+</sup>/Mg<sup>2+</sup> separation performance (No Mg<sup>2+</sup> were detected in the collected solution), achieving efficient lithium recovery and high product purity (Li<sub>2</sub>CO<sub>3</sub>: 99.3 %). This membrane design strategy enables high energy efficiency and powerful lithium extraction in the electrodialysis lithium extraction process, and can be generalized to other energy and separation related membranes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 14","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202422423","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation. The remarkably high rejection of Mg2+ by the COF membrane is achieved via imposed ion dehydration and the construction of the energy well. The proper hydrophilic environment of the COF channel promotes the dissociation of Li+ from the negatively charged functional groups, allowing Li+ for hopping transport supported by the sulfonate side-chains to shorten the diffusion path of Li+. Under high-salinity electrodialysis conditions, the COF membrane demonstrates robust Li+/Mg2+ separation performance (No Mg2+ were detected in the collected solution), achieving efficient lithium recovery and high product purity (Li2CO3: 99.3 %). This membrane design strategy enables high energy efficiency and powerful lithium extraction in the electrodialysis lithium extraction process, and can be generalized to other energy and separation related membranes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脱水增强三嗪共价有机框架的离子识别用于高分辨率Li+/Mg2+分离
从盐湖盐水中精确、快速地提取锂对于满足全球锂资源需求至关重要。然而,如何设计出对目标离子具有准确识别和快速传输路径的离子传输膜仍然是一个重要的挑战。在这里,我们报道了一种具有Li+和Mg2+高分辨率的三嗪共价有机框架(COF)膜,它可以快速传输Li+,同时几乎完全抑制Mg2+的渗透。COF膜对Mg2+的高截除率是通过施加离子脱水和构建能量阱实现的。COF通道适宜的亲水性环境促进了Li+与带负电荷官能团的解离,使得Li+在磺酸侧链的支持下进行跳迁,缩短了Li+的扩散路径。在高盐度电渗析条件下,COF膜表现出强大的Li+/Mg2+分离性能(收集的溶液中未检测到Mg2+),实现了高效的锂回收和高产品纯度(Li2CO3: 99.3%)。该膜设计策略使电渗析锂提取过程中具有高能效和强大的锂提取功能,并可推广到其他与能源和分离相关的膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Engineering Intralayer Anisotropy in Covalent Organic Frameworks Analyte‐Targeted Plasmonic Hotspots on Superlattice Mirror Enable Ultra‐Broad‐Range SERS Sensing of Acetylcholinesterase Non‐Radical Photocured 3D Printing of Liquid Crystal Elastomers Diazirines Beyond Photoaffinity Labeling: A Comprehensive Overview of Applications in Biological Sciences, Materials Chemistry, and NMR‐Spectroscopy A Fluorine-Free Chaotropic Electrolyte Promoting Zinc Peroxide Chemistry for Non-Alkaline Zinc-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1