Zhengwei Ye, Zhuoran Long, Bingxing Zhang, Ishtiaque Ahmed Navid, Jan Paul Menzel, Yifan Shen, Shubham Mondal, Facheng Guo, Theodore B. Norris, Victor S. Batista, Zetian Mi
{"title":"Photocatalytic Conversion of Methane to Ethane and Propane Using Cobalt-Cluster-Activated GaN Nanowires","authors":"Zhengwei Ye, Zhuoran Long, Bingxing Zhang, Ishtiaque Ahmed Navid, Jan Paul Menzel, Yifan Shen, Shubham Mondal, Facheng Guo, Theodore B. Norris, Victor S. Batista, Zetian Mi","doi":"10.1002/anie.202500158","DOIUrl":null,"url":null,"abstract":"The photocatalytic nonoxidative coupling of methane (PNOCM) offers a promising route to synthesize valuable C2+ hydrocarbons while minimizing side reactions. Oxide-based photocatalysts have been predominant in this field, but suffering from limited conversion rates, selectivity, and durability due to poor C-C coupling as well as overoxidation of CH4 by lattice oxygen. Here, we introduce an advancement in PNOCM for methane conversion into ethane and propane using GaN, one of the most produced semiconductors, together with trace amounts of metallic cobalt clusters (0.1 wt%). The photocatalytic system exhibits outstanding stability, maintaining performance over 110 hours, achieving conversion rates of approximately 192.3 mmol g-1 h-1 for ethane and ~17.9 mmol g-1 h-1 for propane, with virtually no coke byproducts detected, representing the highest activity and stability ever reported to our knowledge. This high activity is attributed to the critical methane activation and C-C coupling on Co cluster, which can be greatly accelerated via the ultrafast photogenerated charge transfer from p-GaN to Co cluster. Additionally, the GaN support further synergistically enhances methane activation by in situ generating N-H and O-H species under reaction, as well as provides a vital anti-overoxidation effect to CH4 for high selectivity and stability.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"9 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500158","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The photocatalytic nonoxidative coupling of methane (PNOCM) offers a promising route to synthesize valuable C2+ hydrocarbons while minimizing side reactions. Oxide-based photocatalysts have been predominant in this field, but suffering from limited conversion rates, selectivity, and durability due to poor C-C coupling as well as overoxidation of CH4 by lattice oxygen. Here, we introduce an advancement in PNOCM for methane conversion into ethane and propane using GaN, one of the most produced semiconductors, together with trace amounts of metallic cobalt clusters (0.1 wt%). The photocatalytic system exhibits outstanding stability, maintaining performance over 110 hours, achieving conversion rates of approximately 192.3 mmol g-1 h-1 for ethane and ~17.9 mmol g-1 h-1 for propane, with virtually no coke byproducts detected, representing the highest activity and stability ever reported to our knowledge. This high activity is attributed to the critical methane activation and C-C coupling on Co cluster, which can be greatly accelerated via the ultrafast photogenerated charge transfer from p-GaN to Co cluster. Additionally, the GaN support further synergistically enhances methane activation by in situ generating N-H and O-H species under reaction, as well as provides a vital anti-overoxidation effect to CH4 for high selectivity and stability.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.