Manlin Wang;Yao Yao;Haiyang Ding;Shihai Shao;Bin Xia;Jiangzhou Wang
{"title":"Angle and Distance Discrimination by Utilizing Frequency Conversion Capability of STC-IRS for Covert Communications","authors":"Manlin Wang;Yao Yao;Haiyang Ding;Shihai Shao;Bin Xia;Jiangzhou Wang","doi":"10.1109/TIFS.2025.3530689","DOIUrl":null,"url":null,"abstract":"Covert communication is an important approach to ensure information security by hiding the transmission behavior. Space-domain-coding intelligent reflecting surface (SDC-IRS) can adjust the phase of the reflection signal for passive beamforming in angle domains, which is widely employed in covert communications. However, the gains by SDC-IRS vanish when the warder is proximal to the receiver in angle domains. To overcome this limitation, in this paper, the space-time-coding IRS (STC-IRS) is considered, which can adjust both the phase and the frequency of the reflection signal for passive beamforming in angle-distance domains. Specifically, system performance under STC-IRS and SDC-IRS is compared, revealing the essence that angle and distance discrimination for the receiver is achieved with STC-IRS. Further, to fully exploit STC-IRS, optimization problems are formulated to maximize the covert rate in both line-of-sight scenarios and Rician fading scenarios. To solve the above problems, penalty-based algorithms are proposed where the transmit power, the phase shift and the frequency shift at STC-IRS are optimized jointly with majorization-minimization and block successive upper bound minimization techniques. Considering more general and adverse cases, the proposed algorithms are also extended to the scenario with multiple warders. Simulation results demonstrate the superiority of the proposed scheme compared with other benchmarks. Especially, when the warder and the receiver overlap in angle domains, covert rates with STC-IRS exceed 3 bps by distance domain discrimination, whereas covert rates with SDC-IRS are less than 0.01 bps.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1503-1518"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10845843/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Covert communication is an important approach to ensure information security by hiding the transmission behavior. Space-domain-coding intelligent reflecting surface (SDC-IRS) can adjust the phase of the reflection signal for passive beamforming in angle domains, which is widely employed in covert communications. However, the gains by SDC-IRS vanish when the warder is proximal to the receiver in angle domains. To overcome this limitation, in this paper, the space-time-coding IRS (STC-IRS) is considered, which can adjust both the phase and the frequency of the reflection signal for passive beamforming in angle-distance domains. Specifically, system performance under STC-IRS and SDC-IRS is compared, revealing the essence that angle and distance discrimination for the receiver is achieved with STC-IRS. Further, to fully exploit STC-IRS, optimization problems are formulated to maximize the covert rate in both line-of-sight scenarios and Rician fading scenarios. To solve the above problems, penalty-based algorithms are proposed where the transmit power, the phase shift and the frequency shift at STC-IRS are optimized jointly with majorization-minimization and block successive upper bound minimization techniques. Considering more general and adverse cases, the proposed algorithms are also extended to the scenario with multiple warders. Simulation results demonstrate the superiority of the proposed scheme compared with other benchmarks. Especially, when the warder and the receiver overlap in angle domains, covert rates with STC-IRS exceed 3 bps by distance domain discrimination, whereas covert rates with SDC-IRS are less than 0.01 bps.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features