Bone-Induced Her2 Promotes Secondary Metastasis in HR+/Her2- Breast Cancer.

IF 29.7 1区 医学 Q1 ONCOLOGY Cancer discovery Pub Date : 2025-01-21 DOI:10.1158/2159-8290.cd-23-0543
Rahat Alam,Anna Reva,David G Edwards,Bree M Lege,Laura S Munoz-Arcos,Carolina Reduzzi,Swarnima Singh,Xiaoxin Hao,Yi-Hsuan Wu,Zeru Tian,Laura M Natalee,Gargi Damle,Deniz Demircioglu,Yixian Wang,Ling Wu,Elisabetta Molteni,Dan Hasson,Bora Lim,Zbigniew Gugala,Jerry E Chipuk,Julie E Lang,Joseph A Sparano,Chonghui Cheng,Massimo Cristofanilli,Han Xiao,Xiang H-F Zhang,Igor L Bado
{"title":"Bone-Induced Her2 Promotes Secondary Metastasis in HR+/Her2- Breast Cancer.","authors":"Rahat Alam,Anna Reva,David G Edwards,Bree M Lege,Laura S Munoz-Arcos,Carolina Reduzzi,Swarnima Singh,Xiaoxin Hao,Yi-Hsuan Wu,Zeru Tian,Laura M Natalee,Gargi Damle,Deniz Demircioglu,Yixian Wang,Ling Wu,Elisabetta Molteni,Dan Hasson,Bora Lim,Zbigniew Gugala,Jerry E Chipuk,Julie E Lang,Joseph A Sparano,Chonghui Cheng,Massimo Cristofanilli,Han Xiao,Xiang H-F Zhang,Igor L Bado","doi":"10.1158/2159-8290.cd-23-0543","DOIUrl":null,"url":null,"abstract":"Bone metastases can disseminate to secondary sites and promote breast cancer progression creating additional clinical challenges. The mechanisms contributing to secondary metastasis are barely understood. Here, we evaluate the prediction power of Her2-expressing (Her2E) circulating tumor cells (CTCs) after analyzing over 13,000 CTCs from a cohort of 137 metastatic breast cancer (MBC) patients with initial HR+/Her2- status and employ preclinical models of bone metastasis (BM) to validate the role of Her2E CTCs in multi-organ metastases. While Her2 expression was higher in patients with bone metastasis, experimental analyses revealed that Her2E CTCs derived from bone lesions were more dependent on Her2 activity and more susceptible to anti-Her2 therapy. Targeting the bone-mediated Her2 induction reduces CTC detection and abrogates secondary metastasis from bone. Overall, we elucidate that Her2E CTCs can serve as a non-invasive biomarker for BM formation with high therapeutic benefit for HR+ MBC patients.","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"32 1","pages":""},"PeriodicalIF":29.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.cd-23-0543","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone metastases can disseminate to secondary sites and promote breast cancer progression creating additional clinical challenges. The mechanisms contributing to secondary metastasis are barely understood. Here, we evaluate the prediction power of Her2-expressing (Her2E) circulating tumor cells (CTCs) after analyzing over 13,000 CTCs from a cohort of 137 metastatic breast cancer (MBC) patients with initial HR+/Her2- status and employ preclinical models of bone metastasis (BM) to validate the role of Her2E CTCs in multi-organ metastases. While Her2 expression was higher in patients with bone metastasis, experimental analyses revealed that Her2E CTCs derived from bone lesions were more dependent on Her2 activity and more susceptible to anti-Her2 therapy. Targeting the bone-mediated Her2 induction reduces CTC detection and abrogates secondary metastasis from bone. Overall, we elucidate that Her2E CTCs can serve as a non-invasive biomarker for BM formation with high therapeutic benefit for HR+ MBC patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
期刊最新文献
Bone-Induced Her2 Promotes Secondary Metastasis in HR+/Her2- Breast Cancer. The FBXO45-GEF-H1 axis controls germinal center formation and B-cell lymphomagenesis PIN1 prolyl isomerase promotes initiation and progression of bladder cancer through the SREBP2-mediated cholesterol biosynthesis pathway Disparate Pathways for Extrachromosomal DNA Biogenesis and Genomic DNA Repair. Neuro-Mesenchymal Interaction Mediated by a β2-Adrenergic Nerve Growth Factor Feedforward Loop Promotes Colorectal Cancer Progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1