Jessica R Bobbitt,Leslie Cuellar-Vite,Kristen L Weber-Bonk,Marlee R Yancey,Parth R Majmudar,Ruth A Keri
{"title":"Targeting the mitotic kinase NEK2 enhances CDK4/6 inhibitor efficacy by potentiating genome instability.","authors":"Jessica R Bobbitt,Leslie Cuellar-Vite,Kristen L Weber-Bonk,Marlee R Yancey,Parth R Majmudar,Ruth A Keri","doi":"10.1016/j.jbc.2025.108196","DOIUrl":null,"url":null,"abstract":"Selective inhibitors that target cyclin dependent kinases 4 and 6 (CDK4/6i) are FDA approved for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the anti-tumor effects of CDK4/6i involve the induction of chromosomal instability (CIN). Here, we exploit this mechanism by combining CDK4/6i with other instability-promoting agents to induce maladaptive CIN and irreversible cell fates. Specifically, dual targeting of CDK4/6 and the mitotic kinase NEK2 in vitro drives centrosome amplification and the accumulation of CIN that induces catastrophic mitoses, cell cycle exit, and cell death. Dual targeting also induces CIN in vivo and significantly decreases mouse tumor volume to a greater extent than either drug alone, without inducing overt toxicity. Importantly, we provide evidence that breast cancer cells are selectively dependent on NEK2, but non-transformed cells are not, in contrast with other mitotic kinases that are commonly essential in all cell types. These findings implicate NEK2 as a potential therapeutic target for breast cancer that could circumvent the dose-limiting toxicities that are commonly observed when blocking other mitotic kinases. Moreover, these data suggest that NEK2 inhibitors could be used to sensitize tumors to FDA-approved CDK4/6i for the treatment of breast cancers, improving their efficacy and providing a foundation for expanding the patient population that could benefit from CDK4/6i.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"37 1","pages":"108196"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108196","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Selective inhibitors that target cyclin dependent kinases 4 and 6 (CDK4/6i) are FDA approved for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the anti-tumor effects of CDK4/6i involve the induction of chromosomal instability (CIN). Here, we exploit this mechanism by combining CDK4/6i with other instability-promoting agents to induce maladaptive CIN and irreversible cell fates. Specifically, dual targeting of CDK4/6 and the mitotic kinase NEK2 in vitro drives centrosome amplification and the accumulation of CIN that induces catastrophic mitoses, cell cycle exit, and cell death. Dual targeting also induces CIN in vivo and significantly decreases mouse tumor volume to a greater extent than either drug alone, without inducing overt toxicity. Importantly, we provide evidence that breast cancer cells are selectively dependent on NEK2, but non-transformed cells are not, in contrast with other mitotic kinases that are commonly essential in all cell types. These findings implicate NEK2 as a potential therapeutic target for breast cancer that could circumvent the dose-limiting toxicities that are commonly observed when blocking other mitotic kinases. Moreover, these data suggest that NEK2 inhibitors could be used to sensitize tumors to FDA-approved CDK4/6i for the treatment of breast cancers, improving their efficacy and providing a foundation for expanding the patient population that could benefit from CDK4/6i.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.