Gait Video–Based Prediction of Severity of Cerebellar Ataxia Using Deep Neural Networks
Katsuki Eguchi, Hiroaki Yaguchi, Hisashi Uwatoko, Yuki Iida, Shinsuke Hamada, Sanae Honma, Asako Takei, Fumio Moriwaka, Ichiro Yabe
求助PDF
{"title":"Gait Video–Based Prediction of Severity of Cerebellar Ataxia Using Deep Neural Networks","authors":"Katsuki Eguchi, Hiroaki Yaguchi, Hisashi Uwatoko, Yuki Iida, Shinsuke Hamada, Sanae Honma, Asako Takei, Fumio Moriwaka, Ichiro Yabe","doi":"10.1002/mds.30113","DOIUrl":null,"url":null,"abstract":"BackgroundPose estimation algorithms applied to two‐dimensional videos evaluate gait disturbances; however, a few studies have used this method to evaluate ataxic gait.ObjectiveThe aim was to assess whether a pose estimation algorithm can predict the severity of cerebellar ataxia by applying it to gait videos.MethodsWe video‐recorded 66 patients with degenerative cerebellar diseases performing the timed up‐and‐go test. Key points from the gait videos extracted by a pose estimation algorithm were input into a deep learning model to predict the Scale for the Assessment and Rating of Ataxia (SARA) score. We also evaluated video segments that the model focused on to predict ataxia severity.ResultsThe model achieved a root‐mean‐square error of 2.30 and a coefficient of determination of 0.79 in predicting the SARA score. It primarily focused on standing, turning, and body sway to assess severity.ConclusionsThis study demonstrated that the model may capture gait characteristics from key‐point data and has the potential to predict SARA scores. © 2025 International Parkinson and Movement Disorder Society.","PeriodicalId":213,"journal":{"name":"Movement Disorders","volume":"74 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mds.30113","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
基于步态视频的小脑共济失调严重程度深度神经网络预测
背景姿态估计算法应用于二维视频评估步态干扰;然而,很少有研究使用这种方法来评估共济失调步态。目的将姿态估计算法应用于步态视频,评估姿态估计算法能否预测小脑性共济失调的严重程度。方法对66例退行性小脑疾病患者进行定时up - and - go测试。将姿态估计算法提取的步态视频中的关键点输入到深度学习模型中,以预测共济失调(SARA)评分的评估和评级量表。我们还评估了模型关注的视频片段,以预测共济失调的严重程度。结果该模型预测SARA评分的均方根误差为2.30,决定系数为0.79。它主要集中在站立,转身和身体摇摆来评估严重程度。本研究表明,该模型可以从关键点数据中捕获步态特征,并具有预测SARA评分的潜力。©2025国际帕金森和运动障碍学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。