Gait Video–Based Prediction of Severity of Cerebellar Ataxia Using Deep Neural Networks

IF 7.4 1区 医学 Q1 CLINICAL NEUROLOGY Movement Disorders Pub Date : 2025-01-22 DOI:10.1002/mds.30113
Katsuki Eguchi, Hiroaki Yaguchi, Hisashi Uwatoko, Yuki Iida, Shinsuke Hamada, Sanae Honma, Asako Takei, Fumio Moriwaka, Ichiro Yabe
{"title":"Gait Video–Based Prediction of Severity of Cerebellar Ataxia Using Deep Neural Networks","authors":"Katsuki Eguchi, Hiroaki Yaguchi, Hisashi Uwatoko, Yuki Iida, Shinsuke Hamada, Sanae Honma, Asako Takei, Fumio Moriwaka, Ichiro Yabe","doi":"10.1002/mds.30113","DOIUrl":null,"url":null,"abstract":"BackgroundPose estimation algorithms applied to two‐dimensional videos evaluate gait disturbances; however, a few studies have used this method to evaluate ataxic gait.ObjectiveThe aim was to assess whether a pose estimation algorithm can predict the severity of cerebellar ataxia by applying it to gait videos.MethodsWe video‐recorded 66 patients with degenerative cerebellar diseases performing the timed up‐and‐go test. Key points from the gait videos extracted by a pose estimation algorithm were input into a deep learning model to predict the Scale for the Assessment and Rating of Ataxia (SARA) score. We also evaluated video segments that the model focused on to predict ataxia severity.ResultsThe model achieved a root‐mean‐square error of 2.30 and a coefficient of determination of 0.79 in predicting the SARA score. It primarily focused on standing, turning, and body sway to assess severity.ConclusionsThis study demonstrated that the model may capture gait characteristics from key‐point data and has the potential to predict SARA scores. © 2025 International Parkinson and Movement Disorder Society.","PeriodicalId":213,"journal":{"name":"Movement Disorders","volume":"74 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mds.30113","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundPose estimation algorithms applied to two‐dimensional videos evaluate gait disturbances; however, a few studies have used this method to evaluate ataxic gait.ObjectiveThe aim was to assess whether a pose estimation algorithm can predict the severity of cerebellar ataxia by applying it to gait videos.MethodsWe video‐recorded 66 patients with degenerative cerebellar diseases performing the timed up‐and‐go test. Key points from the gait videos extracted by a pose estimation algorithm were input into a deep learning model to predict the Scale for the Assessment and Rating of Ataxia (SARA) score. We also evaluated video segments that the model focused on to predict ataxia severity.ResultsThe model achieved a root‐mean‐square error of 2.30 and a coefficient of determination of 0.79 in predicting the SARA score. It primarily focused on standing, turning, and body sway to assess severity.ConclusionsThis study demonstrated that the model may capture gait characteristics from key‐point data and has the potential to predict SARA scores. © 2025 International Parkinson and Movement Disorder Society.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于步态视频的小脑共济失调严重程度深度神经网络预测
背景姿态估计算法应用于二维视频评估步态干扰;然而,很少有研究使用这种方法来评估共济失调步态。目的将姿态估计算法应用于步态视频,评估姿态估计算法能否预测小脑性共济失调的严重程度。方法对66例退行性小脑疾病患者进行定时up - and - go测试。将姿态估计算法提取的步态视频中的关键点输入到深度学习模型中,以预测共济失调(SARA)评分的评估和评级量表。我们还评估了模型关注的视频片段,以预测共济失调的严重程度。结果该模型预测SARA评分的均方根误差为2.30,决定系数为0.79。它主要集中在站立,转身和身体摇摆来评估严重程度。本研究表明,该模型可以从关键点数据中捕获步态特征,并具有预测SARA评分的潜力。©2025国际帕金森和运动障碍学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Movement Disorders
Movement Disorders 医学-临床神经学
CiteScore
13.30
自引率
8.10%
发文量
371
审稿时长
12 months
期刊介绍: Movement Disorders publishes a variety of content types including Reviews, Viewpoints, Full Length Articles, Historical Reports, Brief Reports, and Letters. The journal considers original manuscripts on topics related to the diagnosis, therapeutics, pharmacology, biochemistry, physiology, etiology, genetics, and epidemiology of movement disorders. Appropriate topics include Parkinsonism, Chorea, Tremors, Dystonia, Myoclonus, Tics, Tardive Dyskinesia, Spasticity, and Ataxia.
期刊最新文献
Isolated Choreic Manifestations Indicative of Anti-Amphiphysin Antibody-Related Encephalitis in Breast Cancer. Spinocerebellar Ataxia Progression Measured with the Patient-Reported Outcome Measure of Ataxia. Comparative Study of Focused Ultrasound Unilateral Thalamotomy and Subthalamotomy for Medication‐Refractory Parkinson's Disease Tremor Exploration of Neurodegenerative Diseases Using Long-Read Sequencing and Optical Genome Mapping Technologies. Oscillatory Coupling Between Thalamus, Cerebellum, and Motor Cortex in Essential Tremor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1