Robust fluorite-structured high-entropy oxides with integrated multi-active site construction for Li-CO2 batteries catalytic cathodes

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-01-22 DOI:10.1039/d4qi02985b
Qinghua Deng, Dan Chen, Shi Zhang, Yuan Chen, Hanbo Zeng, Xuguang Li, Sike Zhang, Tianyu Wang
{"title":"Robust fluorite-structured high-entropy oxides with integrated multi-active site construction for Li-CO2 batteries catalytic cathodes","authors":"Qinghua Deng, Dan Chen, Shi Zhang, Yuan Chen, Hanbo Zeng, Xuguang Li, Sike Zhang, Tianyu Wang","doi":"10.1039/d4qi02985b","DOIUrl":null,"url":null,"abstract":"As emerging high-energy storage devices, lithium-carbon dioxide (Li-CO2) batteries facilitate carbon neutrality and address the current limitations of lithium-ion batteries in terms of energy density. Stable and highly active catalytic cathodes constitute a pivotal factor in driving the commercialization of Li-CO2 batteries regard to reactant activation and decomposition of discharge products timely. Herein, a ceria-based high-entropy oxides (HEOs), denoted as CeFeCoNiMnOx, is synthesized by exploiting the exceptional heterogeneity-tolerant properties of fluorite-structured cerium oxide (CeO2). Leveraging the robust structural and chemical stability of the CeO2 framework, the encapsulated polymetallic active sites within the oxide are effectively integrated, thereby enhancing the electrochemical performance of the cathode. The resultant Li-CO2 battery demonstrates remarkable discharge voltage at 2.98 V, substantial discharge capacity of 11128 mAh g-1 as well as exceptional cycling stability of 171 cycles based on the HEOs at current rate of 100 mA g-1. Benefiting from the effective decomposition of discharge products by the synergistic action of multiple active sites, the cell exhibits a leading low overpotential at 0.91 V. The innovative design approach of utilizing fluorite-structured CeO2 as a substrate for the integration of multiple active sites and the subsequent construction of HEOs broadens the spectrum of catalytic cathodes for Li-CO2 batteries.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"32 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02985b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

As emerging high-energy storage devices, lithium-carbon dioxide (Li-CO2) batteries facilitate carbon neutrality and address the current limitations of lithium-ion batteries in terms of energy density. Stable and highly active catalytic cathodes constitute a pivotal factor in driving the commercialization of Li-CO2 batteries regard to reactant activation and decomposition of discharge products timely. Herein, a ceria-based high-entropy oxides (HEOs), denoted as CeFeCoNiMnOx, is synthesized by exploiting the exceptional heterogeneity-tolerant properties of fluorite-structured cerium oxide (CeO2). Leveraging the robust structural and chemical stability of the CeO2 framework, the encapsulated polymetallic active sites within the oxide are effectively integrated, thereby enhancing the electrochemical performance of the cathode. The resultant Li-CO2 battery demonstrates remarkable discharge voltage at 2.98 V, substantial discharge capacity of 11128 mAh g-1 as well as exceptional cycling stability of 171 cycles based on the HEOs at current rate of 100 mA g-1. Benefiting from the effective decomposition of discharge products by the synergistic action of multiple active sites, the cell exhibits a leading low overpotential at 0.91 V. The innovative design approach of utilizing fluorite-structured CeO2 as a substrate for the integration of multiple active sites and the subsequent construction of HEOs broadens the spectrum of catalytic cathodes for Li-CO2 batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
坚固的萤石结构高熵氧化物,集成多活性位点结构,用于Li-CO2电池催化阴极
作为新兴的高能存储设备,锂-二氧化碳(Li-CO2)电池促进了碳中和,并解决了当前锂离子电池在能量密度方面的局限性。稳定、高活性的催化阴极是推动Li-CO2电池商业化的关键因素,对反应物的激活和放电产物的及时分解至关重要。本文利用萤石结构的氧化铈(CeO2)优异的耐异质性,合成了一种基于铈的高熵氧化物(HEOs),称为CeFeCoNiMnOx。利用CeO2框架强大的结构和化学稳定性,氧化物内封装的多金属活性位点被有效地整合,从而提高了阴极的电化学性能。所制备的锂-二氧化碳电池在2.98 V的放电电压下,具有11128 mAh g-1的可观放电容量,以及在100 mA g-1电流下基于HEOs的171次循环的优异稳定性。得益于多个活性位点的协同作用对放电产物的有效分解,该电池在0.91 V处表现出领先的低过电位。利用萤石结构的CeO2作为衬底整合多个活性位点并随后构建heo的创新设计方法拓宽了Li-CO2电池催化阴极的光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Tuning the Li-Sn alloy dispersity to improve the lithiophilicity of lithium metal anode towards stable lithium metal batteries Coordination modulation of single-atom Zn sites to boost oxygen reduction performance Electrostatic Regulation of Zn2+ Ion Concentration on Electrodes and Its Impact on Electrochemical Performance Inch-sized single crystal of radiation-sensitive copper-based hybrid perovskite for direct X-ray detection Regulating the coordination environment of single-atom catalysts anchored on nitrogen-doped graphene for efficient nitrogen reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1