Discovery of Fluorescent Probe ABDS-2 for Farnesoid X Receptor Modulator Characterization and Cell-Based Imaging

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-22 DOI:10.1021/acs.analchem.4c03743
Xianjie Qiu, Wenqi Li, Xiaoqin Li, Bin Wu, Minxian Dai, Yi Xia, Gong Zhang, Yizhou Bian, Jiayi Chen, Kunzhong Wu, Yongzhi Lu, Miru Tang, Hua Lin, Jinsai Shang
{"title":"Discovery of Fluorescent Probe ABDS-2 for Farnesoid X Receptor Modulator Characterization and Cell-Based Imaging","authors":"Xianjie Qiu, Wenqi Li, Xiaoqin Li, Bin Wu, Minxian Dai, Yi Xia, Gong Zhang, Yizhou Bian, Jiayi Chen, Kunzhong Wu, Yongzhi Lu, Miru Tang, Hua Lin, Jinsai Shang","doi":"10.1021/acs.analchem.4c03743","DOIUrl":null,"url":null,"abstract":"The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups. The probes were designed and assessed via molecular dynamics simulations, and four were selected for synthesis to be evaluated in in vitro biochemical assays. Among these, ABDS-2 exhibited high sensitivity and stability, which demonstrated satisfactory validation in high-throughput screening assays. Furthermore, ABDS-2 facilitated real-time bioimaging to monitor FXR homeostasis at the cellular level, providing spatially resolved insights into molecular interactions critical for cellular function studies. This research underscores the efficiency of CADD in probe design and positions ABDS-2 as a valuable chemical tool for in vitro assays and cellular-level bioimaging.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"32 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03743","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups. The probes were designed and assessed via molecular dynamics simulations, and four were selected for synthesis to be evaluated in in vitro biochemical assays. Among these, ABDS-2 exhibited high sensitivity and stability, which demonstrated satisfactory validation in high-throughput screening assays. Furthermore, ABDS-2 facilitated real-time bioimaging to monitor FXR homeostasis at the cellular level, providing spatially resolved insights into molecular interactions critical for cellular function studies. This research underscores the efficiency of CADD in probe design and positions ABDS-2 as a valuable chemical tool for in vitro assays and cellular-level bioimaging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Highly Sensitive Digital and Analog Immunoassay Based on Submicron Magnetic Beads and Fluorescent Microspheres Tracing of Amino Acids Dynamics in Cell Lines Based on 18O Stable Isotope Labeling A Contracted Channel Droplet Reinjection Chip-Based Simple Integrated ddpcr System for SARS-CoV-2 and H1N1 Detection Superhydrophobic Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Sensitive Detection of Trace Nanoplastics in Water Precise Electron-Withdrawing Strength Regulation of π-Conjugate Bridge-Boosted Specific Detection toward α-Methyltryptamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1