{"title":"Viral Membrane-Targeting Amphipathic Helical Peptide-Based Fluorogenic Probes for the Analysis of Infectious Titers of Enveloped Viruses","authors":"Yusuke Sato, Yusaku Hatanaka, Yoshitaka Sato, Kota Matsumoto, Shion Osana, Ryoichi Nagatomi, Seiichi Nishizawa","doi":"10.1021/acs.analchem.4c04852","DOIUrl":null,"url":null,"abstract":"Enveloped viruses have caused the majority of epidemics and pandemics over the past decade. Direct sensing of virus particles (virions) holds great potential for the functional analysis of enveloped viruses. Here, we explore a series of viral membrane-targeting amphipathic helical (AH) peptide-based molecular probes for the assessment of infectious titers of the human coronavirus 229E virus (HCoV-229E). The M2-protein-derived AH peptide is identified as a strong binder for HCoV-229E, and its conjugate with Nile Red, M2-NR, exhibits fluorogenic response upon selective binding to the viral membrane of HCoV-229E. We demonstrate that the response of M2-NR toward the HCoV-229E virus enables the rapid, simple, and reliable assessment of the infectivity of HCoV-229E. In addition, the present fluorescence assay for infectivity analysis is applicable to various kinds of enveloped virus including influenza A virus, herpes simplex virus-1, and lentivirus.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"69 2 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04852","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enveloped viruses have caused the majority of epidemics and pandemics over the past decade. Direct sensing of virus particles (virions) holds great potential for the functional analysis of enveloped viruses. Here, we explore a series of viral membrane-targeting amphipathic helical (AH) peptide-based molecular probes for the assessment of infectious titers of the human coronavirus 229E virus (HCoV-229E). The M2-protein-derived AH peptide is identified as a strong binder for HCoV-229E, and its conjugate with Nile Red, M2-NR, exhibits fluorogenic response upon selective binding to the viral membrane of HCoV-229E. We demonstrate that the response of M2-NR toward the HCoV-229E virus enables the rapid, simple, and reliable assessment of the infectivity of HCoV-229E. In addition, the present fluorescence assay for infectivity analysis is applicable to various kinds of enveloped virus including influenza A virus, herpes simplex virus-1, and lentivirus.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.