T. Eftekhari, Y. Dong, 雨欣 董, W. Fong, V. Shah, S. Simha, B. C. Andersen, S. Andrew, M. Bhardwaj, T. Cassanelli, S. Chatterjee, D. A. Coulter, E. Fonseca, B. M. Gaensler, A. C. Gordon, J. W. T. Hessels, A. L. Ibik, R. C. Joseph, L. A. Kahinga, V. Kaspi, B. Kharel, C. D. Kilpatrick, A. E. Lanman, M. Lazda, C. Leung, C. Liu, L. Mas-Ribas, K. W. Masui, R. Mckinven, J. Mena-Parra, A. A. Miller, K. Nimmo, A. Pandhi, S. S. Patil, A. B. Pearlman, Z. Pleunis, J. X. Prochaska, M. Rafiei-Ravandi, M. Sammons, P. Scholz, K. Shin, K. Smith and I. Stairs
{"title":"The Massive and Quiescent Elliptical Host Galaxy of the Repeating Fast Radio Burst FRB 20240209A","authors":"T. Eftekhari, Y. Dong, 雨欣 董, W. Fong, V. Shah, S. Simha, B. C. Andersen, S. Andrew, M. Bhardwaj, T. Cassanelli, S. Chatterjee, D. A. Coulter, E. Fonseca, B. M. Gaensler, A. C. Gordon, J. W. T. Hessels, A. L. Ibik, R. C. Joseph, L. A. Kahinga, V. Kaspi, B. Kharel, C. D. Kilpatrick, A. E. Lanman, M. Lazda, C. Leung, C. Liu, L. Mas-Ribas, K. W. Masui, R. Mckinven, J. Mena-Parra, A. A. Miller, K. Nimmo, A. Pandhi, S. S. Patil, A. B. Pearlman, Z. Pleunis, J. X. Prochaska, M. Rafiei-Ravandi, M. Sammons, P. Scholz, K. Shin, K. Smith and I. Stairs","doi":"10.3847/2041-8213/ad9de2","DOIUrl":null,"url":null,"abstract":"The discovery and localization of FRB 20240209A by the Canadian Hydrogen Intensity Mapping Fast Radio Burst (CHIME/FRB) experiment marks the first repeating FRB localized with the CHIME/FRB Outriggers and adds to the small sample of repeating FRBs with associated host galaxies. Here we present Keck and Gemini observations of the host that reveal a redshift z = 0.1384 ± 0.0004. We perform stellar population modeling to jointly fit the optical through mid-IR data of the host and infer a median stellar mass log(M*/M⊙) = 11.35 ± 0.01 and a mass-weighted stellar population age ~11 Gyr, corresponding to the most massive and oldest FRB host discovered to date. Coupled with a star formation rate <0.31 M⊙ yr−1, the specific star formation rate <10−11.9 yr−1 classifies the host as quiescent. Through surface brightness profile modeling, we determine an elliptical galaxy morphology, marking the host as the first confirmed elliptical FRB host. The discovery of a quiescent early-type host galaxy within a transient class predominantly characterized by late-type star-forming hosts is reminiscent of short-duration gamma-ray bursts, Type Ia supernovae, and ultraluminous X-ray sources. Based on these shared host demographics, coupled with a large offset as demonstrated in our companion Letter, we conclude that preferred sources for FRB 20240209A include magnetars formed through merging binary neutron stars/white dwarfs or the accretion-induced collapse of a white dwarf, or a luminous X-ray binary. Together with FRB 20200120E localized to a globular cluster in M81, our findings provide strong evidence that some fraction of FRBs may arise from a process distinct from the core collapse of massive stars.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad9de2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery and localization of FRB 20240209A by the Canadian Hydrogen Intensity Mapping Fast Radio Burst (CHIME/FRB) experiment marks the first repeating FRB localized with the CHIME/FRB Outriggers and adds to the small sample of repeating FRBs with associated host galaxies. Here we present Keck and Gemini observations of the host that reveal a redshift z = 0.1384 ± 0.0004. We perform stellar population modeling to jointly fit the optical through mid-IR data of the host and infer a median stellar mass log(M*/M⊙) = 11.35 ± 0.01 and a mass-weighted stellar population age ~11 Gyr, corresponding to the most massive and oldest FRB host discovered to date. Coupled with a star formation rate <0.31 M⊙ yr−1, the specific star formation rate <10−11.9 yr−1 classifies the host as quiescent. Through surface brightness profile modeling, we determine an elliptical galaxy morphology, marking the host as the first confirmed elliptical FRB host. The discovery of a quiescent early-type host galaxy within a transient class predominantly characterized by late-type star-forming hosts is reminiscent of short-duration gamma-ray bursts, Type Ia supernovae, and ultraluminous X-ray sources. Based on these shared host demographics, coupled with a large offset as demonstrated in our companion Letter, we conclude that preferred sources for FRB 20240209A include magnetars formed through merging binary neutron stars/white dwarfs or the accretion-induced collapse of a white dwarf, or a luminous X-ray binary. Together with FRB 20200120E localized to a globular cluster in M81, our findings provide strong evidence that some fraction of FRBs may arise from a process distinct from the core collapse of massive stars.