{"title":"Coherent Strain-Inhibiting Phase Construction of Lithium-Rich Manganese-Based Oxide Toward High Mechanochemical Stability","authors":"Zhou Xu, Xingzhong Guo, Xuemei Zeng, Junxiang Liu, Jingran Yin, Minglu Ren, Junzhang Wang, Tengteng Qin, Zhizhen Zhang, Luxi Li, Khalil Amine, Yifei Yuan, Tongchao Liu","doi":"10.1021/jacs.4c11385","DOIUrl":null,"url":null,"abstract":"A layered lithium-rich manganese-based oxide cathode, containing <i>R</i>3̅<i>m</i> (LiTMO<sub>2</sub>, TM = Mn, Ni, Co) and <i>C</i>2/<i>m</i> (Li<sub>2</sub>MnO<sub>3</sub>) nanodomains, utilizes both transition metals and oxygen redox to yield substantial energy density. However, the inherent heterogeneous nature and distinct nanodomain redox chemistries of layered lithium-rich oxides will inevitably cause pernicious lattice strain and structural displacement, which can hardly be eliminated by conventional doping or coating strategies and result in accelerated performance decay. Herein, we incorporate a strain-inhibiting perovskite phase coherently grown within the layered structure to effectively restrain the displacement and lattice strain during uneven Li-ion extraction. The enhanced mechanochemical stability of the designed cathode benefits the persistent structure and reversible oxygen redox, thereby achieving high initial Coulombic efficiency and stable cycling and voltage profiles. Our approach of lattice engineering alleviates the strain and displacement caused by inhomogeneous reactivity between heterogeneous nanodomains and promotes the development of advanced cathode materials with long durability.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"20 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11385","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A layered lithium-rich manganese-based oxide cathode, containing R3̅m (LiTMO2, TM = Mn, Ni, Co) and C2/m (Li2MnO3) nanodomains, utilizes both transition metals and oxygen redox to yield substantial energy density. However, the inherent heterogeneous nature and distinct nanodomain redox chemistries of layered lithium-rich oxides will inevitably cause pernicious lattice strain and structural displacement, which can hardly be eliminated by conventional doping or coating strategies and result in accelerated performance decay. Herein, we incorporate a strain-inhibiting perovskite phase coherently grown within the layered structure to effectively restrain the displacement and lattice strain during uneven Li-ion extraction. The enhanced mechanochemical stability of the designed cathode benefits the persistent structure and reversible oxygen redox, thereby achieving high initial Coulombic efficiency and stable cycling and voltage profiles. Our approach of lattice engineering alleviates the strain and displacement caused by inhomogeneous reactivity between heterogeneous nanodomains and promotes the development of advanced cathode materials with long durability.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.