{"title":"Monomer Design Enables Mechanistic Mapping of Anionic Ring-Opening Polymerization of Aromatic Thionolactones","authors":"Shaoqiu Zheng, Shu-Sen Chen, Yang-Yang Li, Minjian Liao, Xuhui Liang, Ke Li, Xiaopeng Li, Jinming Hu, Dian-Feng Chen","doi":"10.1002/anie.202500581","DOIUrl":null,"url":null,"abstract":"Degradable chalcogenide polyesters, e.g., polythioesters (PTEs), typically exhibit improved thermal, mechanical, and optical properties. Anionic ring-opening polymerization (ROP) of thionolactones, an intrinsically promising yet underexplored approach to accessing PTEs, however, is still limited by: intolerance of metal catalysts, inadequate control over chain growth, and the absence of aromatic system. Monomer design-boosted mechanistic studies may address the above challenges. Here, we present a new and highly reactive thionolactone synthesized from 1,1′-binaphthyl-2,2′-diol (BINOL). Our investigations into polymerization kinetics and thermodynamics have underscored the importance of rapid initiation, eventually leading to the discovery of tetrabutylammonium 2-naphthyl-thiocarboxylate as a distinctive initiator that enables genuinely controlled and living polymerization of thionolactones. Ultimately, the atropisomerism inherent in BINOL has resulted in the creation of axially chiral PTE materials with tailored molecular weights, enantiomeric compositions, and topologies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"185 3 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500581","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Degradable chalcogenide polyesters, e.g., polythioesters (PTEs), typically exhibit improved thermal, mechanical, and optical properties. Anionic ring-opening polymerization (ROP) of thionolactones, an intrinsically promising yet underexplored approach to accessing PTEs, however, is still limited by: intolerance of metal catalysts, inadequate control over chain growth, and the absence of aromatic system. Monomer design-boosted mechanistic studies may address the above challenges. Here, we present a new and highly reactive thionolactone synthesized from 1,1′-binaphthyl-2,2′-diol (BINOL). Our investigations into polymerization kinetics and thermodynamics have underscored the importance of rapid initiation, eventually leading to the discovery of tetrabutylammonium 2-naphthyl-thiocarboxylate as a distinctive initiator that enables genuinely controlled and living polymerization of thionolactones. Ultimately, the atropisomerism inherent in BINOL has resulted in the creation of axially chiral PTE materials with tailored molecular weights, enantiomeric compositions, and topologies.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.