Lijun Dou, Zhenxing Xu, Jielin Xu, Chengxi Zang, Chang Su, Andrew A. Pieper, James B. Leverenz, Fei Wang, Xiongwei Zhu, Jeffrey Cummings, Feixiong Cheng
{"title":"A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson’s disease","authors":"Lijun Dou, Zhenxing Xu, Jielin Xu, Chengxi Zang, Chang Su, Andrew A. Pieper, James B. Leverenz, Fei Wang, Xiongwei Zhu, Jeffrey Cummings, Feixiong Cheng","doi":"10.1038/s41531-025-00870-y","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments only manage symptoms and lack the ability to slow or prevent disease progression. We utilized a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding genome-wide association studies (GWAS) loci effects on five types of brain-specific quantitative trait loci (xQTLs, including expression, protein, splicing, methylation and histone acetylation) under the protein–protein interactome (PPI) network. We then prioritized 175 PD likely risk genes (pdRGs), such as <i>SNCA</i>, <i>CTSB</i>, <i>LRRK2, DGKQ</i>, <i>a</i>nd <i>CD44</i>, which are enriched in druggable targets and differentially expressed genes across multiple human brain-specific cell types. Integrating network proximity-based drug repurposing and patient electronic health record (EHR) data observations, we identified Simvastatin as being significantly associated with reduced incidence of PD (hazard ratio (HR) = 0.91 for fall outcome, 95% confidence interval (CI): 0.87–0.94; HR = 0.88 for dementia outcome, 95% CI: 0.86–0.89) after adjusting for 267 covariates. In summary, our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"10 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00870-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments only manage symptoms and lack the ability to slow or prevent disease progression. We utilized a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding genome-wide association studies (GWAS) loci effects on five types of brain-specific quantitative trait loci (xQTLs, including expression, protein, splicing, methylation and histone acetylation) under the protein–protein interactome (PPI) network. We then prioritized 175 PD likely risk genes (pdRGs), such as SNCA, CTSB, LRRK2, DGKQ, and CD44, which are enriched in druggable targets and differentially expressed genes across multiple human brain-specific cell types. Integrating network proximity-based drug repurposing and patient electronic health record (EHR) data observations, we identified Simvastatin as being significantly associated with reduced incidence of PD (hazard ratio (HR) = 0.91 for fall outcome, 95% confidence interval (CI): 0.87–0.94; HR = 0.88 for dementia outcome, 95% CI: 0.86–0.89) after adjusting for 267 covariates. In summary, our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.