Microenvironment-confined kinetic elucidation and implementation of a DNA nano-phage with a shielded internal computing layer

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-22 DOI:10.1038/s41467-025-56219-9
Decui Tang, Shuoyao He, Yani Yang, Yuqi Zeng, Mengyi Xiong, Ding Ding, Weijun Wei, Yifan Lyu, Xiao-Bing Zhang, Weihong Tan
{"title":"Microenvironment-confined kinetic elucidation and implementation of a DNA nano-phage with a shielded internal computing layer","authors":"Decui Tang, Shuoyao He, Yani Yang, Yuqi Zeng, Mengyi Xiong, Ding Ding, Weijun Wei, Yifan Lyu, Xiao-Bing Zhang, Weihong Tan","doi":"10.1038/s41467-025-56219-9","DOIUrl":null,"url":null,"abstract":"<p>Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the “always-on” response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement. We explain the contradiction between fast molecular diffusion and effective DNA computation using a “diffusion trap” theory and comprehensively overcome the kinetic bottleneck of DNP by determining the rate-limiting step. We predict and verify that identifying trace amount of target cells in complex cell mixtures is an intrinsic merit of microenvironment-confined DNA computation. Finally, we show that DNP can efficiently work in complex human blood samples by shielding the interference of erythrocytes and enhance phagocytosis of macrophages toward target cells by blocking CD47-SIRPα pathway.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"33 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56219-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the “always-on” response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement. We explain the contradiction between fast molecular diffusion and effective DNA computation using a “diffusion trap” theory and comprehensively overcome the kinetic bottleneck of DNP by determining the rate-limiting step. We predict and verify that identifying trace amount of target cells in complex cell mixtures is an intrinsic merit of microenvironment-confined DNA computation. Finally, we show that DNP can efficiently work in complex human blood samples by shielding the interference of erythrocytes and enhance phagocytosis of macrophages toward target cells by blocking CD47-SIRPα pathway.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有屏蔽内部计算层的 DNA 纳米噬菌体的微环境约束动力学阐明与实施
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations Random resistive memory-based deep extreme point learning machine for unified visual processing Direct observation of chiral edge current at zero magnetic field in a magnetic topological insulator Unravelling genomic drivers of speciation in Musa through genome assemblies of wild banana ancestors Step-necking growth of silicon nanowire channels for high performance field effect transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1