Mouquan Shen;Xianming Wang;Song Zhu;Tingwen Huang;Qing-Guo Wang
{"title":"Event-Triggered Data-Driven Control of Nonlinear Systems via Q-Learning","authors":"Mouquan Shen;Xianming Wang;Song Zhu;Tingwen Huang;Qing-Guo Wang","doi":"10.1109/TSMC.2024.3493965","DOIUrl":null,"url":null,"abstract":"This article aims to study event-triggered data-driven control of nonlinear systems via Q-learning. An input-output mapping is described by a pseudo-partial derivatives form. A Q-learning-based optimization criterion is provided to establish a data-driven control law. A dynamic penalty factor composed of tracking errors is supplied to accelerate errors convergence. Consequently, a novel triggering rule related to this factor and performance cost is proposed to save communication resources. Sufficient conditions are developed for guaranteeing the ultimately uniform boundedness of the resultant tracking errors system. Two simulation studies are executed to verify the effectiveness of the presented scheme.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"1069-1077"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767597/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article aims to study event-triggered data-driven control of nonlinear systems via Q-learning. An input-output mapping is described by a pseudo-partial derivatives form. A Q-learning-based optimization criterion is provided to establish a data-driven control law. A dynamic penalty factor composed of tracking errors is supplied to accelerate errors convergence. Consequently, a novel triggering rule related to this factor and performance cost is proposed to save communication resources. Sufficient conditions are developed for guaranteeing the ultimately uniform boundedness of the resultant tracking errors system. Two simulation studies are executed to verify the effectiveness of the presented scheme.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.