{"title":"Cytopathology Image Super-Resolution of Portable Microscope Based on Convolutional Window-Integration Transformer","authors":"Jinyu Zhang;Shenghua Cheng;Xiuli Liu;Ning Li;Gong Rao;Shaoqun Zeng","doi":"10.1109/TCI.2024.3522761","DOIUrl":null,"url":null,"abstract":"High-quality cytopathology images are the guarantee of cervical cancer computer-aided screening. However, obtaining such images is dependent on expensive devices, which hinders the screening popularization in less developed areas. In this study, we propose a convolutional window-integration Transformer for cytopathology image super-resolution (SR) of portable microscope. We use self-attention within the window to integrate patches, and then design a convolutional window-integration feed-forward network with two 5 × 5 size kernels to achieve cross-window patch integration. This design avoids long-range self-attention and facilitates SR local mapping learning. Besides, we design a multi-layer feature fusion in feature extraction to enhance high-frequency details, achieving better SR reconstruction. Finally, we register and establish a dataset of 239,100 paired portable microscope images and standard microscope images based on feature point matching. A series of experiments demonstrate that our model has the minimum parameter number and outperforms state-of-the-art CNN-based and recent Transformer-based SR models with PSNR improvement of 0.09–0.53 dB. We release this dataset and codes publicly to promote the development of computational cytopathology imaging.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"77-88"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819978/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-quality cytopathology images are the guarantee of cervical cancer computer-aided screening. However, obtaining such images is dependent on expensive devices, which hinders the screening popularization in less developed areas. In this study, we propose a convolutional window-integration Transformer for cytopathology image super-resolution (SR) of portable microscope. We use self-attention within the window to integrate patches, and then design a convolutional window-integration feed-forward network with two 5 × 5 size kernels to achieve cross-window patch integration. This design avoids long-range self-attention and facilitates SR local mapping learning. Besides, we design a multi-layer feature fusion in feature extraction to enhance high-frequency details, achieving better SR reconstruction. Finally, we register and establish a dataset of 239,100 paired portable microscope images and standard microscope images based on feature point matching. A series of experiments demonstrate that our model has the minimum parameter number and outperforms state-of-the-art CNN-based and recent Transformer-based SR models with PSNR improvement of 0.09–0.53 dB. We release this dataset and codes publicly to promote the development of computational cytopathology imaging.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.