A Fractal-Based Complex Belief Entropy for Uncertainty Measure in Complex Evidence Theory

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-11-28 DOI:10.1109/TSMC.2024.3493200
Keming Wu;Fuyuan Xiao;Yi Zhang
{"title":"A Fractal-Based Complex Belief Entropy for Uncertainty Measure in Complex Evidence Theory","authors":"Keming Wu;Fuyuan Xiao;Yi Zhang","doi":"10.1109/TSMC.2024.3493200","DOIUrl":null,"url":null,"abstract":"Complex evidence theory (CET), an extension of the traditional D-S evidence theory, has garnered academic interest for its capacity to articulate uncertainty through complex basic belief assignment (CBBA) and to perform uncertainty reasoning using complex combination rules. Nonetheless, quantifying uncertainty within CET remains a subject of ongoing research. To enhance decision making, a method for complex pignistic belief transformation (CPBT) has been introduced, which allocates CBBAs of multielement focal elements to subsets. CPBT’s core lies in the fractal-inspired redistribution of the complex mass function. This article presents an experimental simulation and analysis of CPBT’s generation process along the temporal dimension, rooted in fractal theory. Subsequently, a novel fractal-based complex belief (FCB) entropy is proposed to gauge the uncertainty of CBBA. The properties of FCB entropy are examined, and its efficacy is demonstrated through various numerical examples and practical application.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"910-924"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10770823/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Complex evidence theory (CET), an extension of the traditional D-S evidence theory, has garnered academic interest for its capacity to articulate uncertainty through complex basic belief assignment (CBBA) and to perform uncertainty reasoning using complex combination rules. Nonetheless, quantifying uncertainty within CET remains a subject of ongoing research. To enhance decision making, a method for complex pignistic belief transformation (CPBT) has been introduced, which allocates CBBAs of multielement focal elements to subsets. CPBT’s core lies in the fractal-inspired redistribution of the complex mass function. This article presents an experimental simulation and analysis of CPBT’s generation process along the temporal dimension, rooted in fractal theory. Subsequently, a novel fractal-based complex belief (FCB) entropy is proposed to gauge the uncertainty of CBBA. The properties of FCB entropy are examined, and its efficacy is demonstrated through various numerical examples and practical application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分形的复杂信念熵在复杂证据理论中的不确定性度量
复杂证据理论(CET)是传统D-S证据理论的扩展,因其通过复杂基本信念分配(CBBA)表达不确定性和使用复杂组合规则进行不确定性推理的能力而引起了学术界的兴趣。尽管如此,量化CET中的不确定性仍然是一个正在进行的研究课题。为了提高决策能力,提出了一种将多元素焦点元素的cbba分配到子集的复杂匹格尼论信念变换方法。CPBT的核心在于复杂质量函数的分形再分布。本文基于分形理论,对CPBT在时间维上的生成过程进行了实验模拟和分析。随后,提出了一种新的基于分形的复杂信念熵来衡量CBBA的不确定性。研究了FCB熵的性质,并通过数值算例和实际应用证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1