Neuroadaptive Fixed-Time Synchronous Control With Composite Learning Policy for Robotic Multifingers

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-12-05 DOI:10.1109/TSMC.2024.3500776
Xingqiang Zhao;Yantong Zhang;Yongduan Song
{"title":"Neuroadaptive Fixed-Time Synchronous Control With Composite Learning Policy for Robotic Multifingers","authors":"Xingqiang Zhao;Yantong Zhang;Yongduan Song","doi":"10.1109/TSMC.2024.3500776","DOIUrl":null,"url":null,"abstract":"Dexterous manipulation of anthropomorphic multifinger robotic hands (MFRHs) is crucial for performing diverse and intricate tasks, where collaboration among the fingers is essential. This article presents a novel neural network-based composite learning strategy tailored for the synchronous control of multiple fingers in anthropomorphic MFRHs subjected to unknown dynamics and disturbances. By leveraging graph theory, the interconnections among fingers are delineated and integrated into the dynamic equations. The modified nonsingular terminal sliding mode (TSM) technique is employed to achieve fixed-time convergence of error variables without triggering singularity. Within the framework of composite learning, a novel computable prediction error is formulated by harnessing online historical data alongside the regression matrix. The combination of prediction errors and the regression matrix is utilized for parameter estimation, which, under a milder interval excitation (IE) condition, facilitates accurate parameter estimation without the requirement for the stringent persistent excitation (PE) condition. The feasibility and effectiveness of the proposed technique are demonstrated through simulation experiments.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"1230-1240"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778408/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dexterous manipulation of anthropomorphic multifinger robotic hands (MFRHs) is crucial for performing diverse and intricate tasks, where collaboration among the fingers is essential. This article presents a novel neural network-based composite learning strategy tailored for the synchronous control of multiple fingers in anthropomorphic MFRHs subjected to unknown dynamics and disturbances. By leveraging graph theory, the interconnections among fingers are delineated and integrated into the dynamic equations. The modified nonsingular terminal sliding mode (TSM) technique is employed to achieve fixed-time convergence of error variables without triggering singularity. Within the framework of composite learning, a novel computable prediction error is formulated by harnessing online historical data alongside the regression matrix. The combination of prediction errors and the regression matrix is utilized for parameter estimation, which, under a milder interval excitation (IE) condition, facilitates accurate parameter estimation without the requirement for the stringent persistent excitation (PE) condition. The feasibility and effectiveness of the proposed technique are demonstrated through simulation experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复合学习策略的机器人多指神经自适应固定时间同步控制
拟人化多指机器人手(MFRHs)的灵巧操作对于执行各种复杂任务至关重要,其中手指之间的协作是必不可少的。本文提出了一种新的基于神经网络的复合学习策略,用于拟人化mfrh中受未知动态和干扰的多指同步控制。利用图论,手指之间的相互联系被描绘并集成到动态方程中。采用改进的非奇异终端滑模(TSM)技术,在不触发奇异的情况下实现误差变量的定时收敛。在复合学习的框架内,通过利用在线历史数据和回归矩阵制定了一种新的可计算预测误差。采用预测误差与回归矩阵相结合的方法进行参数估计,在较温和的区间激励(IE)条件下,不需要严格的持续激励(PE)条件,就能准确估计参数。仿真实验验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1