{"title":"Distributed Continuous-Time Optimization With Uncertain Time-Varying Quadratic Cost Functions","authors":"Liangze Jiang;Zheng-Guang Wu;Lei Wang","doi":"10.1109/TSMC.2024.3506587","DOIUrl":null,"url":null,"abstract":"This article studies distributed continuous-time optimization for time-varying quadratic cost functions with uncertain parameters. We first propose a centralized adaptive optimization algorithm using partial information of the cost function. It can be seen that even if there are uncertain parameters in the cost function, exact optimization can still be achieved. To solve this problem in a distributed manner when different local cost functions have identical Hessians, we propose a novel distributed algorithm that cascades the fixed-time average estimator and the distributed optimizer. We remove the requirement for the upper bounds of certain complex functions by integrating state-based gains in the proposed design. We further extend this result to address the distributed optimization where the time-varying cost functions have nonidentical Hessians. We prove the convergence of all the proposed algorithms in the global sense. Numerical examples verify the proposed algorithms.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"1526-1536"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10787662/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article studies distributed continuous-time optimization for time-varying quadratic cost functions with uncertain parameters. We first propose a centralized adaptive optimization algorithm using partial information of the cost function. It can be seen that even if there are uncertain parameters in the cost function, exact optimization can still be achieved. To solve this problem in a distributed manner when different local cost functions have identical Hessians, we propose a novel distributed algorithm that cascades the fixed-time average estimator and the distributed optimizer. We remove the requirement for the upper bounds of certain complex functions by integrating state-based gains in the proposed design. We further extend this result to address the distributed optimization where the time-varying cost functions have nonidentical Hessians. We prove the convergence of all the proposed algorithms in the global sense. Numerical examples verify the proposed algorithms.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.