On the Effectiveness of Regularization Methods for Soft Actor-Critic in Discrete-Action Domains

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-12-04 DOI:10.1109/TSMC.2024.3505613
Bang Giang Le;Viet Cuong Ta
{"title":"On the Effectiveness of Regularization Methods for Soft Actor-Critic in Discrete-Action Domains","authors":"Bang Giang Le;Viet Cuong Ta","doi":"10.1109/TSMC.2024.3505613","DOIUrl":null,"url":null,"abstract":"Soft actor-critic (SAC) is a reinforcement learning algorithm that employs the maximum entropy framework to train a stochastic policy. This work examines a specific failure case of SAC where the stochastic policy is trained to maximize the expected entropy from a sparse reward environment. We demonstrate that the over-exploration of SAC can make the entropy temperature collapse, followed by unstable updates to the actor. Based on our analyses, we introduce Reg-SAC, an improved version of SAC, to mitigate the detrimental effects of the entropy temperature on the learning stability of the stochastic policy. Reg-SAC incorporates a clipping value to prevent the entropy temperature collapse and regularizes the gradient updates of the policy via Kullback-Leibler divergence. Through experiments on discrete benchmarks, our proposed Reg-SAC outperforms the standard SAC in spare-reward grid world environments while it is able to maintain competitive performance in the dense-reward Atari benchmark. The results highlight that our regularized version makes the stochastic policy of SAC more stable in discrete-action domains.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"1425-1438"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777063/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Soft actor-critic (SAC) is a reinforcement learning algorithm that employs the maximum entropy framework to train a stochastic policy. This work examines a specific failure case of SAC where the stochastic policy is trained to maximize the expected entropy from a sparse reward environment. We demonstrate that the over-exploration of SAC can make the entropy temperature collapse, followed by unstable updates to the actor. Based on our analyses, we introduce Reg-SAC, an improved version of SAC, to mitigate the detrimental effects of the entropy temperature on the learning stability of the stochastic policy. Reg-SAC incorporates a clipping value to prevent the entropy temperature collapse and regularizes the gradient updates of the policy via Kullback-Leibler divergence. Through experiments on discrete benchmarks, our proposed Reg-SAC outperforms the standard SAC in spare-reward grid world environments while it is able to maintain competitive performance in the dense-reward Atari benchmark. The results highlight that our regularized version makes the stochastic policy of SAC more stable in discrete-action domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散行为域软行为评价的正则化方法有效性研究
软行为者批评(SAC)是一种采用最大熵框架来训练随机策略的强化学习算法。这项工作考察了SAC的一个特定失败案例,其中随机策略被训练为从稀疏奖励环境中最大化期望熵。我们证明了SAC的过度探索会导致熵温崩溃,随后会对行动者进行不稳定的更新。在此基础上,我们引入了一种改进的SAC - Reg-SAC,以减轻熵温对随机策略学习稳定性的不利影响。regg - sac采用了一个剪切值来防止熵温崩溃,并通过Kullback-Leibler散度对策略的梯度更新进行了正则化。通过在离散基准测试上的实验,我们提出的Reg-SAC在低奖励网格环境中优于标准SAC,同时能够在高奖励Atari基准测试中保持竞争性能。结果表明,我们的正则化版本使SAC的随机策略在离散作用域中更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1