Adaptive Neural Tracking of Uncertain State-Constrained Nonlinear Systems With Unmatched Disturbances: Prescribed-Time Disturbance Observer Approach

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-12-03 DOI:10.1109/TSMC.2024.3502661
Hyeong Jin Kim;Sung Jin Yoo
{"title":"Adaptive Neural Tracking of Uncertain State-Constrained Nonlinear Systems With Unmatched Disturbances: Prescribed-Time Disturbance Observer Approach","authors":"Hyeong Jin Kim;Sung Jin Yoo","doi":"10.1109/TSMC.2024.3502661","DOIUrl":null,"url":null,"abstract":"We propose a prescribed-time nonlinear disturbance observer (PTNDO) approach for adaptive prescribed-time tracking of state-constrained strict-feedback systems with unmatched disturbances and nonlinearities. In contrast to existing control methods that address the state constraint problem, the key contribution of this article is the development of a neural-network-based adaptive PTNDO to compensate for unmatched disturbances within a prescribed time while dealing with unknown nonlinearities in the field of the adaptive prescribed-time tracking. Based on a nonlinear transformation function technique that eliminates the conventional feasibility conditions of virtual control laws in recursive design steps, the original state-constrained system is transformed into an unconstrained system. Subsequently, by deriving a practical prescribed-time adjustment function and its related stability lemma, a PTNDO-based adaptive control strategy is established to guarantee that the disturbance observation and tracking errors converge to the adjustable bound, including zero at a prescribed settling time, while maintaining state constraints. Simulation results verify the resulting approach.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"1439-1450"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10773001/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a prescribed-time nonlinear disturbance observer (PTNDO) approach for adaptive prescribed-time tracking of state-constrained strict-feedback systems with unmatched disturbances and nonlinearities. In contrast to existing control methods that address the state constraint problem, the key contribution of this article is the development of a neural-network-based adaptive PTNDO to compensate for unmatched disturbances within a prescribed time while dealing with unknown nonlinearities in the field of the adaptive prescribed-time tracking. Based on a nonlinear transformation function technique that eliminates the conventional feasibility conditions of virtual control laws in recursive design steps, the original state-constrained system is transformed into an unconstrained system. Subsequently, by deriving a practical prescribed-time adjustment function and its related stability lemma, a PTNDO-based adaptive control strategy is established to guarantee that the disturbance observation and tracking errors converge to the adjustable bound, including zero at a prescribed settling time, while maintaining state constraints. Simulation results verify the resulting approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不匹配扰动的不确定状态约束非线性系统的自适应神经跟踪:规定时间扰动观测器方法
针对具有不匹配扰动和非线性的状态约束严格反馈系统,提出了一种规定时间非线性扰动观测器(PTNDO)方法。与解决状态约束问题的现有控制方法相比,本文的关键贡献是开发了一种基于神经网络的自适应PTNDO,以补偿规定时间内的不匹配干扰,同时处理自适应规定时间跟踪领域的未知非线性。基于非线性变换函数技术,消除了递归设计步骤中虚拟控制律的常规可行性条件,将原状态约束系统转化为无约束系统。随后,通过推导一个实用的规定时间调整函数及其稳定性引理,建立了一种基于ptndo的自适应控制策略,在保持状态约束的情况下,保证扰动观测和跟踪误差在规定的沉降时间收敛到可调界,包括收敛到零。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1