Polarization State Attention Dehazing Network With a Simulated Polar-Haze Dataset

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-23 DOI:10.1109/TMM.2024.3521827
Sijia Wen;Yinqiang Zheng;Feng Lu
{"title":"Polarization State Attention Dehazing Network With a Simulated Polar-Haze Dataset","authors":"Sijia Wen;Yinqiang Zheng;Feng Lu","doi":"10.1109/TMM.2024.3521827","DOIUrl":null,"url":null,"abstract":"Image dehazing under harsh weather conditions remains a challenging and ill-posed problem. In addition, acquiring real-time haze-free counterparts of hazy images poses difficulties. Existing approaches commonly synthesize hazy data by relying on estimated depth information, which is prone to errors due to its physical unreliability. While generative networks can transfer some hazy features to clear images, the resulting hazy images still exhibit an artificial appearance. In this paper, we introduce polarization cues to propose a haze simulation strategy to synthesize hazy data, ensuring visually pleasing results that adhere to physical laws. Leveraging on the simulated Polar-Haze dataset, we present a polarization state attention dehazing network (PSADNet), which consists of a polarization extraction module and a polarization dehazing module. The proposed polarization extraction model incorporates an attention mechanism to capture high-level image features related to polarization and chromaticity. The polarization dehazing module utilizes these features derived from the polarization analysis to enhance image dehazing capabilities while preserving the accuracy of the polarization information. Promising results are observed in both qualitative and quantitative experiments, supporting the effectiveness of the proposed PSADNet and the validity of polarization-based haze simulation strategy.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"263-274"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812839/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Image dehazing under harsh weather conditions remains a challenging and ill-posed problem. In addition, acquiring real-time haze-free counterparts of hazy images poses difficulties. Existing approaches commonly synthesize hazy data by relying on estimated depth information, which is prone to errors due to its physical unreliability. While generative networks can transfer some hazy features to clear images, the resulting hazy images still exhibit an artificial appearance. In this paper, we introduce polarization cues to propose a haze simulation strategy to synthesize hazy data, ensuring visually pleasing results that adhere to physical laws. Leveraging on the simulated Polar-Haze dataset, we present a polarization state attention dehazing network (PSADNet), which consists of a polarization extraction module and a polarization dehazing module. The proposed polarization extraction model incorporates an attention mechanism to capture high-level image features related to polarization and chromaticity. The polarization dehazing module utilizes these features derived from the polarization analysis to enhance image dehazing capabilities while preserving the accuracy of the polarization information. Promising results are observed in both qualitative and quantitative experiments, supporting the effectiveness of the proposed PSADNet and the validity of polarization-based haze simulation strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极化状态注意力去雾网络的模拟极化雾数据集
恶劣天气条件下的图像除雾仍然是一个具有挑战性和不适定性的问题。此外,获取朦胧图像的实时无雾对应物也存在困难。现有方法一般依靠估计深度信息合成雾霾数据,由于其物理不可靠,容易产生误差。虽然生成网络可以将一些模糊的特征转移到清晰的图像中,但生成的模糊图像仍然呈现出人工的外观。在本文中,我们引入偏振线索,提出了一种雾霾模拟策略来合成雾霾数据,确保视觉上令人愉悦的结果符合物理定律。利用模拟的极地雾霾数据集,我们提出了一个极化状态关注去雾网络(PSADNet),该网络由极化提取模块和极化去雾模块组成。所提出的偏振提取模型结合了注意机制来捕获与偏振和色度相关的高级图像特征。偏振去雾模块利用从偏振分析中得到的这些特征来增强图像去雾能力,同时保持偏振信息的准确性。在定性和定量实验中都观察到令人满意的结果,支持了所提出的PSADNet的有效性和基于偏振的雾霾模拟策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization List of Reviewers Dual Semantic Reconstruction Network for Weakly Supervised Temporal Sentence Grounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1