Scientific exploration with expert knowledge (SEEK) in autonomous scanning probe microscopy with active learning†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-12-04 DOI:10.1039/D4DD00277F
Utkarsh Pratiush, Hiroshi Funakubo, Rama Vasudevan, Sergei V. Kalinin and Yongtao Liu
{"title":"Scientific exploration with expert knowledge (SEEK) in autonomous scanning probe microscopy with active learning†","authors":"Utkarsh Pratiush, Hiroshi Funakubo, Rama Vasudevan, Sergei V. Kalinin and Yongtao Liu","doi":"10.1039/D4DD00277F","DOIUrl":null,"url":null,"abstract":"<p >Microscopy plays a foundational role in materials science, biology, and nanotechnology, offering high-resolution imaging and detailed insights into properties at the nanoscale and atomic level. Microscopy automation <em>via</em> active machine learning approaches is a transformative advancement, offering increased efficiency, reproducibility, and the capability to perform complex experiments. Our previous work on autonomous experimentation with scanning probe microscopy (SPM) demonstrated an active learning framework using deep kernel learning (DKL) for structure–property relationship discovery. Here we extend this approach to a multi-stage decision process to incorporate prior knowledge and human interest into DKL-based workflows, we operationalize these workflows in SPM. By integrating expected rewards from structure libraries or spectroscopic features, we enhanced the exploration efficiency of autonomous microscopy, demonstrating more efficient and targeted exploration in autonomous microscopy. These methods can be seamlessly applied to other microscopy and imaging techniques. Furthermore, the concept can be adapted for general Bayesian optimization in material discovery across a broad range of autonomous experimental fields.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 252-263"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00277f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopy plays a foundational role in materials science, biology, and nanotechnology, offering high-resolution imaging and detailed insights into properties at the nanoscale and atomic level. Microscopy automation via active machine learning approaches is a transformative advancement, offering increased efficiency, reproducibility, and the capability to perform complex experiments. Our previous work on autonomous experimentation with scanning probe microscopy (SPM) demonstrated an active learning framework using deep kernel learning (DKL) for structure–property relationship discovery. Here we extend this approach to a multi-stage decision process to incorporate prior knowledge and human interest into DKL-based workflows, we operationalize these workflows in SPM. By integrating expected rewards from structure libraries or spectroscopic features, we enhanced the exploration efficiency of autonomous microscopy, demonstrating more efficient and targeted exploration in autonomous microscopy. These methods can be seamlessly applied to other microscopy and imaging techniques. Furthermore, the concept can be adapted for general Bayesian optimization in material discovery across a broad range of autonomous experimental fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
科学探索与专家知识(SEEK)在自主扫描探针显微镜与主动学习†
显微镜在材料科学,生物学和纳米技术中起着基础作用,提供高分辨率成像和纳米级和原子级特性的详细见解。通过主动机器学习方法实现显微镜自动化是一个变革性的进步,提供了更高的效率、可重复性和执行复杂实验的能力。我们之前在扫描探针显微镜(SPM)的自主实验中展示了一个使用深度核学习(DKL)进行结构-性质关系发现的主动学习框架。在这里,我们将这种方法扩展到一个多阶段的决策过程,将先验知识和人类兴趣结合到基于dcl的工作流中,我们在SPM中操作这些工作流。通过整合结构库或光谱特征的预期回报,我们提高了自治显微镜的探测效率,展示了自治显微镜更有效和有针对性的探测。这些方法可以无缝地应用于其他显微镜和成像技术。此外,该概念可以适用于广泛的自主实验领域中材料发现的一般贝叶斯优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1