Sparse Representation-Based LDCT Image Quality Assessment Using the JND Model

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-01-13 DOI:10.1109/ACCESS.2025.3528882
Mo Shen;Rongrong Sun;Wen Ye
{"title":"Sparse Representation-Based LDCT Image Quality Assessment Using the JND Model","authors":"Mo Shen;Rongrong Sun;Wen Ye","doi":"10.1109/ACCESS.2025.3528882","DOIUrl":null,"url":null,"abstract":"In clinical environments, the quality of low-dose computerized tomography (LDCT) images is inevitably degraded by artifacts and noise. Accurate and clinically relevant image quality assessment (IQA) for LDCT images is crucial to provide appropriate medical care. However, due to the absence of reference images and inadequate understanding of the human visual system (HVS), there is currently a lack of effective IQA methods. To address this problem, this paper proposes a no-reference IQA method that emulates the perceptual characteristics of the HVS. The method is based on the use of sparse representation in conjunction with a just noticeable distortion (JND) model. Specifically, for each tested image, a patch-level JND map is first calculated to indicate the noticeable level of distortion in different regions. Subsequently, noticeable patches of the image are encoded via sparse representation, followed by max pooling to obtain sparse features. Finally, these sparse features, along with the sorted JND values, are combined as overall features into a regression model to predict an objective quality score. By combining two types of features, our method can measure the quality from the perspectives of both local spatial structures and visual distortion sensitivity. Our method is evaluated on the LDCTIQAC2023 database, and the experimental results demonstrate the effectiveness of our method, which correlates reasonably well with the radiologists’ subjective scores.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"10422-10431"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838566","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10838566/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical environments, the quality of low-dose computerized tomography (LDCT) images is inevitably degraded by artifacts and noise. Accurate and clinically relevant image quality assessment (IQA) for LDCT images is crucial to provide appropriate medical care. However, due to the absence of reference images and inadequate understanding of the human visual system (HVS), there is currently a lack of effective IQA methods. To address this problem, this paper proposes a no-reference IQA method that emulates the perceptual characteristics of the HVS. The method is based on the use of sparse representation in conjunction with a just noticeable distortion (JND) model. Specifically, for each tested image, a patch-level JND map is first calculated to indicate the noticeable level of distortion in different regions. Subsequently, noticeable patches of the image are encoded via sparse representation, followed by max pooling to obtain sparse features. Finally, these sparse features, along with the sorted JND values, are combined as overall features into a regression model to predict an objective quality score. By combining two types of features, our method can measure the quality from the perspectives of both local spatial structures and visual distortion sensitivity. Our method is evaluated on the LDCTIQAC2023 database, and the experimental results demonstrate the effectiveness of our method, which correlates reasonably well with the radiologists’ subjective scores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于JND模型的稀疏表示LDCT图像质量评估
在临床环境中,低剂量计算机断层扫描(LDCT)图像的质量不可避免地会受到伪影和噪声的影响。准确和临床相关的LDCT图像质量评估(IQA)对于提供适当的医疗服务至关重要。然而,由于缺乏参考图像和对人类视觉系统(HVS)的认识不足,目前缺乏有效的IQA方法。为了解决这一问题,本文提出了一种模拟HVS感知特性的无参考IQA方法。该方法基于稀疏表示与刚可注意失真(JND)模型的结合。具体来说,对于每个测试图像,首先计算一个补丁级JND图,以指示不同区域的明显失真程度。然后,通过稀疏表示对图像的显著斑块进行编码,然后进行最大池化,得到稀疏特征。最后,这些稀疏特征与排序后的JND值一起作为总体特征组合到回归模型中,以预测客观质量分数。结合这两类特征,我们的方法可以从局部空间结构和视觉失真灵敏度两个角度来衡量质量。我们的方法在LDCTIQAC2023数据库上进行了评估,实验结果证明了我们的方法的有效性,它与放射科医生的主观评分有相当好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Editorial Board IEEE Access™ Editorial Board Corrections to “The Recent Technologies to Curb the Second-Wave of COVID-19 Pandemic” Corrections to “Decentralized Asynchronous Formation Planning of Multirotor Aerial Vehicles in Dynamic Environments Using Flexible Formation Graphs and Tight Trajectory Hulls” Study on the Motion Patterns of Nested Test Cabin and Its Shock Response Spectrum Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1