Hybrid Intersection Over Union Loss for a Robust Small Object Detection in Low-Light Conditions

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-01-15 DOI:10.1109/ACCESS.2025.3530089
Twahir Kiobya;Junfeng Zhou;Baraka Maiseli;Maqbool Khan
{"title":"Hybrid Intersection Over Union Loss for a Robust Small Object Detection in Low-Light Conditions","authors":"Twahir Kiobya;Junfeng Zhou;Baraka Maiseli;Maqbool Khan","doi":"10.1109/ACCESS.2025.3530089","DOIUrl":null,"url":null,"abstract":"In computer vision, most existing works about object detection focus on detecting objects in the good lighting conditions instead of low-light conditions. Even the few existing works that are centered on object detection in the low-light conditions, predominantly focus on the general object detection rather than the detection of small objects. The main challenges affecting small object detection accuracy in low-light conditions are occlusion caused by the low light, shadows, and darkness that adversely affect the surrounding context leading to poor object classification and the insufficient spatial information that negatively affect object localization resulting in poor small object detection. To address the challenge of poor small object detection in low-light conditions we propose the Hybrid Intersection over Union (HIoU) localization loss to enhance the detection accuracy of small objects in these conditions. This loss utilizes the top-bottom distances of the targeted and predicted bounding boxes and the manhattan distance of the boxes’ centres to deal with the issue of misalignment that negatively affect the small object detection accuracy. Also, it jointly works with the classification loss to offer a joint optimization that facilitates a network to learn features that are important for both localization and classification. Experimental results show that the proposed loss enhances the detection accuracy of small objects in low-light conditions.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12321-12331"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843225/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In computer vision, most existing works about object detection focus on detecting objects in the good lighting conditions instead of low-light conditions. Even the few existing works that are centered on object detection in the low-light conditions, predominantly focus on the general object detection rather than the detection of small objects. The main challenges affecting small object detection accuracy in low-light conditions are occlusion caused by the low light, shadows, and darkness that adversely affect the surrounding context leading to poor object classification and the insufficient spatial information that negatively affect object localization resulting in poor small object detection. To address the challenge of poor small object detection in low-light conditions we propose the Hybrid Intersection over Union (HIoU) localization loss to enhance the detection accuracy of small objects in these conditions. This loss utilizes the top-bottom distances of the targeted and predicted bounding boxes and the manhattan distance of the boxes’ centres to deal with the issue of misalignment that negatively affect the small object detection accuracy. Also, it jointly works with the classification loss to offer a joint optimization that facilitates a network to learn features that are important for both localization and classification. Experimental results show that the proposed loss enhances the detection accuracy of small objects in low-light conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱光条件下基于混合交叉的鲁棒小目标检测
在计算机视觉中,现有的目标检测工作大多集中在良好光照条件下的目标检测,而不是低光照条件下的目标检测。即使是现有的少数以弱光条件下的物体检测为中心的作品,也主要是对一般物体的检测,而不是对小物体的检测。低光条件下影响小目标检测精度的主要挑战是低光、阴影和黑暗造成的遮挡,对周围环境产生不利影响,导致目标分类不良;空间信息不足,对目标定位产生不利影响,导致小目标检测不良。为了解决弱光条件下小目标检测不佳的问题,我们提出了混合交联(HIoU)定位损失来提高在这种条件下小目标的检测精度。这种损失利用目标框和预测框的上下距离以及框中心的曼哈顿距离来处理对小目标检测精度产生负面影响的不对齐问题。此外,它还与分类损失联合工作,提供联合优化,使网络能够学习对定位和分类都很重要的特征。实验结果表明,该方法提高了弱光条件下小目标的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Editorial Board IEEE Access™ Editorial Board Corrections to “The Recent Technologies to Curb the Second-Wave of COVID-19 Pandemic” Corrections to “Decentralized Asynchronous Formation Planning of Multirotor Aerial Vehicles in Dynamic Environments Using Flexible Formation Graphs and Tight Trajectory Hulls” Study on the Motion Patterns of Nested Test Cabin and Its Shock Response Spectrum Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1