{"title":"Hybrid Intersection Over Union Loss for a Robust Small Object Detection in Low-Light Conditions","authors":"Twahir Kiobya;Junfeng Zhou;Baraka Maiseli;Maqbool Khan","doi":"10.1109/ACCESS.2025.3530089","DOIUrl":null,"url":null,"abstract":"In computer vision, most existing works about object detection focus on detecting objects in the good lighting conditions instead of low-light conditions. Even the few existing works that are centered on object detection in the low-light conditions, predominantly focus on the general object detection rather than the detection of small objects. The main challenges affecting small object detection accuracy in low-light conditions are occlusion caused by the low light, shadows, and darkness that adversely affect the surrounding context leading to poor object classification and the insufficient spatial information that negatively affect object localization resulting in poor small object detection. To address the challenge of poor small object detection in low-light conditions we propose the Hybrid Intersection over Union (HIoU) localization loss to enhance the detection accuracy of small objects in these conditions. This loss utilizes the top-bottom distances of the targeted and predicted bounding boxes and the manhattan distance of the boxes’ centres to deal with the issue of misalignment that negatively affect the small object detection accuracy. Also, it jointly works with the classification loss to offer a joint optimization that facilitates a network to learn features that are important for both localization and classification. Experimental results show that the proposed loss enhances the detection accuracy of small objects in low-light conditions.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12321-12331"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843225/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In computer vision, most existing works about object detection focus on detecting objects in the good lighting conditions instead of low-light conditions. Even the few existing works that are centered on object detection in the low-light conditions, predominantly focus on the general object detection rather than the detection of small objects. The main challenges affecting small object detection accuracy in low-light conditions are occlusion caused by the low light, shadows, and darkness that adversely affect the surrounding context leading to poor object classification and the insufficient spatial information that negatively affect object localization resulting in poor small object detection. To address the challenge of poor small object detection in low-light conditions we propose the Hybrid Intersection over Union (HIoU) localization loss to enhance the detection accuracy of small objects in these conditions. This loss utilizes the top-bottom distances of the targeted and predicted bounding boxes and the manhattan distance of the boxes’ centres to deal with the issue of misalignment that negatively affect the small object detection accuracy. Also, it jointly works with the classification loss to offer a joint optimization that facilitates a network to learn features that are important for both localization and classification. Experimental results show that the proposed loss enhances the detection accuracy of small objects in low-light conditions.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.