Automated high-throughput organic crystal structure prediction via population-based sampling

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-11-20 DOI:10.1039/D4DD00264D
Qiang Zhu and Shinnosuke Hattori
{"title":"Automated high-throughput organic crystal structure prediction via population-based sampling","authors":"Qiang Zhu and Shinnosuke Hattori","doi":"10.1039/D4DD00264D","DOIUrl":null,"url":null,"abstract":"<p >With advancements in computational molecular modeling and powerful structure search methods, it is now possible to systematically screen crystal structures for small organic molecules. In this context, we introduce the Python package High-Throughput Organic Crystal Structure Prediction (HTOCSP), which enables the prediction and screening of crystal packing for small organic molecules in an automated, high-throughput manner. Specifically, we describe the workflow, which encompasses molecular analysis, force field generation, and crystal generation and sampling, all within customized constraints based on user input. We demonstrate the application of HTOCSP by systematically screening organic crystals for 100 molecules using different sampling strategies and force field options. Furthermore, we analyze the benchmark results to understand the underlying factors that may influence the complexity of the crystal energy landscape. Finally, we discuss the current limitations of the package and potential future extensions.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 120-134"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00264d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00264d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With advancements in computational molecular modeling and powerful structure search methods, it is now possible to systematically screen crystal structures for small organic molecules. In this context, we introduce the Python package High-Throughput Organic Crystal Structure Prediction (HTOCSP), which enables the prediction and screening of crystal packing for small organic molecules in an automated, high-throughput manner. Specifically, we describe the workflow, which encompasses molecular analysis, force field generation, and crystal generation and sampling, all within customized constraints based on user input. We demonstrate the application of HTOCSP by systematically screening organic crystals for 100 molecules using different sampling strategies and force field options. Furthermore, we analyze the benchmark results to understand the underlying factors that may influence the complexity of the crystal energy landscape. Finally, we discuss the current limitations of the package and potential future extensions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于群体采样的自动化高通量有机晶体结构预测
随着计算分子建模和强大的结构搜索方法的进步,现在可以系统地筛选小有机分子的晶体结构。在这种情况下,我们介绍了Python包高通量有机晶体结构预测(HTOCSP),它能够以自动化,高通量的方式预测和筛选小有机分子的晶体包装。具体来说,我们描述了工作流程,其中包括分子分析,力场生成,晶体生成和采样,所有这些都在基于用户输入的定制约束内。我们通过使用不同的采样策略和力场选项系统地筛选100个分子的有机晶体来演示HTOCSP的应用。此外,我们分析了基准结果,以了解可能影响晶体能量景观复杂性的潜在因素。最后,我们讨论了包的当前限制和潜在的未来扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides Commit: Mini article for dynamic reporting of incremental improvements to previous scholarly work Artificial intelligence-assisted electrochemical sensors for qualitative and semi-quantitative multiplexed analyses† Exploring the expertise of large language models in materials science and metallurgical engineering†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1