Data efficiency of classification strategies for chemical and materials design†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-12-03 DOI:10.1039/D4DD00298A
Quinn M. Gallagher and Michael A. Webb
{"title":"Data efficiency of classification strategies for chemical and materials design†","authors":"Quinn M. Gallagher and Michael A. Webb","doi":"10.1039/D4DD00298A","DOIUrl":null,"url":null,"abstract":"<p >Active learning and design–build–test–learn strategies are increasingly employed to accelerate materials discovery and characterization. Many data-driven materials design campaigns require that materials are synthesizable, stable, soluble, recyclable, or non-toxic. Resources are wasted when materials are recommended that do not satisfy these constraints. Acquiring this knowledge during the design campaign is inefficient, and many materials constraints transcend specific design objectives. However, there is no consensus on the most data-efficient algorithm for classifying whether a material satisfies a constraint. To address this gap, we comprehensively compare the performance of 100 strategies for classifying chemical and materials behavior. Performance is assessed across 31 classification tasks sourced from the literature in chemical and materials science. From these results, we recommend best practices for building data-efficient classifiers, showing the neural network- and random forest-based active learning algorithms are most efficient across tasks. We also show that classification task complexity can be quantified by task metafeatures, most notably the noise-to-signal ratio. These metafeatures are then used to rationalize the data efficiency of different molecular representations and the impact of domain size on task complexity. Overall, this work provides a comprehensive survey of data-efficient classification strategies, identifies attributes of top-performing strategies, and suggests avenues for further study.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 135-148"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00298a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00298a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Active learning and design–build–test–learn strategies are increasingly employed to accelerate materials discovery and characterization. Many data-driven materials design campaigns require that materials are synthesizable, stable, soluble, recyclable, or non-toxic. Resources are wasted when materials are recommended that do not satisfy these constraints. Acquiring this knowledge during the design campaign is inefficient, and many materials constraints transcend specific design objectives. However, there is no consensus on the most data-efficient algorithm for classifying whether a material satisfies a constraint. To address this gap, we comprehensively compare the performance of 100 strategies for classifying chemical and materials behavior. Performance is assessed across 31 classification tasks sourced from the literature in chemical and materials science. From these results, we recommend best practices for building data-efficient classifiers, showing the neural network- and random forest-based active learning algorithms are most efficient across tasks. We also show that classification task complexity can be quantified by task metafeatures, most notably the noise-to-signal ratio. These metafeatures are then used to rationalize the data efficiency of different molecular representations and the impact of domain size on task complexity. Overall, this work provides a comprehensive survey of data-efficient classification strategies, identifies attributes of top-performing strategies, and suggests avenues for further study.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化工与材料设计分类策略的数据效率
主动学习和设计-构建-测试-学习策略越来越多地用于加速材料的发现和表征。许多数据驱动的材料设计活动要求材料是可合成的、稳定的、可溶的、可回收的或无毒的。当推荐的材料不满足这些约束时,资源就被浪费了。在设计活动中获取这些知识是低效的,并且许多材料限制超出了特定的设计目标。然而,对于对材料是否满足约束进行分类的最有效的数据算法尚无共识。为了解决这一差距,我们全面比较了100种分类化学和材料行为的策略的性能。通过化学和材料科学文献中的31个分类任务来评估绩效。根据这些结果,我们推荐了构建数据高效分类器的最佳实践,表明基于神经网络和随机森林的主动学习算法在任务中是最有效的。我们还表明,分类任务的复杂性可以通过任务元特征来量化,最明显的是噪声与信号比。然后使用这些元特征来合理化不同分子表示的数据效率以及域大小对任务复杂性的影响。总的来说,这项工作提供了数据高效分类策略的全面调查,确定了表现最好的策略的属性,并提出了进一步研究的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1